Rút gọn biểu thức
\(E=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến
\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
rút gọn biểu thức trên
\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)
\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)
rút gọn biểu thức ;
\(p=\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
rút gọn biểu thức
\(p=\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(\frac{\sqrt{10}\left(3+\sqrt{5}\right)}{10+\sqrt{30+10\sqrt{5}}}\) __\(\frac{\sqrt{10}\left(3-\sqrt{5}\right)}{10+\sqrt{30-10\sqrt{5}}}\)
=\(\frac{\sqrt{10}\left(3+\sqrt{5}\right)}{15+\sqrt{5}}\)__\(\frac{\sqrt{10}\left(3-\sqrt{5}\right)}{15-\sqrt{5}}\)
=\(\sqrt{10}\)\(\left(\frac{3+\sqrt{5}}{15+\sqrt{5}}-\frac{3-\sqrt{5}}{15-\sqrt{5}}\right)\)
=\(\sqrt{10}\)\(\frac{6\sqrt{5}}{55}\)=\(\frac{6\sqrt{2}}{11}\)h gum nhaaa
rút gọn biểu thức: P=\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Có: \(\frac{P}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\right)\)
\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{6+2\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{6-2\sqrt{5}}}\)
\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}+1\right)^2}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\frac{3+\sqrt{5}}{2\sqrt{5}+\sqrt{5}+1}-\frac{3-\sqrt{5}}{2\sqrt{5}+\sqrt{5}-1}\)
\(=\frac{3+\sqrt{5}}{3\sqrt{5}+1}-\frac{3-\sqrt{5}}{3\sqrt{5}-1}\)
\(=\frac{\left(3+\sqrt{5}\right)\left(3\sqrt{5}-1\right)-\left(3-\sqrt{5}\right)\left(3\sqrt{5}+1\right)}{\left(3\sqrt{5}+1\right)\left(3\sqrt{5}-1\right)}\)
\(=\frac{9\sqrt{5}-3+15-\sqrt{5}-9\sqrt{5}-3+15+\sqrt{5}}{9\cdot5-1}\)
\(=\frac{24}{44}=\frac{6}{11}\)
=>P=\(\frac{6}{11}\cdot\sqrt{2}=\frac{6\sqrt{2}}{11}\)
Chính xác 100% mink thử bằng máy tính r
mink làm hơi tắt phần nào k hiểu hói mink nhé
Rút gọn biểu thức: \(P=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}-\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}+\frac{\left(\sqrt{5}-1\right).\sqrt[3]{2+\sqrt{5}}}{\sqrt{28}-10\sqrt{3}+\sqrt{3}}\)
Giúp mk nha!
Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !
p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.
a) Rút gọn biểu thức:\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{\sqrt{5}-5}{1-\sqrt{5}}\right):\frac{1}{\sqrt{2}-\sqrt{5}}\)
b) Tìm giá trị nhỏ nhất của biểu thức B=\(x^2-x\sqrt{3}+1\)
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)