Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Je Yoon
Xem chi tiết
Akai Haruma
7 tháng 5 2020 lúc 0:23

Bạn tham khảo lời giải tại đây:

Câu hỏi của khanhhuyen6a5 - Toán lớp 9 | Học trực tuyến

TRUONG MY DUNG
Xem chi tiết
Nobi Nobita
17 tháng 7 2020 lúc 8:53

\(\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}-\sqrt{5}}+\frac{\sqrt{3}-\sqrt{5}}{\sqrt{3}+\sqrt{5}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\left(\sqrt{3}-\sqrt{5}\right)^2}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{3+2\sqrt{15}+5+3-2\sqrt{15}+5}{3-5}\)

\(=\frac{3+5+3+5}{-2}=\frac{16}{-2}=-8\)

Khách vãng lai đã xóa
Hoàng Đình Đại
Xem chi tiết
Park Chanyeol
Xem chi tiết
Hoàng Đình Đại
Xem chi tiết
Park Chanyeol
Xem chi tiết
thang
28 tháng 7 2016 lúc 14:16

nhin bai o tren se thay minh lam

Park Chanyeol
Xem chi tiết
thang
28 tháng 7 2016 lúc 13:54

\(\frac{\sqrt{10}\left(3+\sqrt{5}\right)}{10+\sqrt{30+10\sqrt{5}}}\) __\(\frac{\sqrt{10}\left(3-\sqrt{5}\right)}{10+\sqrt{30-10\sqrt{5}}}\)

=\(\frac{\sqrt{10}\left(3+\sqrt{5}\right)}{15+\sqrt{5}}\)__\(\frac{\sqrt{10}\left(3-\sqrt{5}\right)}{15-\sqrt{5}}\)

=\(\sqrt{10}\)\(\left(\frac{3+\sqrt{5}}{15+\sqrt{5}}-\frac{3-\sqrt{5}}{15-\sqrt{5}}\right)\)

=\(\sqrt{10}\)\(\frac{6\sqrt{5}}{55}\)=\(\frac{6\sqrt{2}}{11}\)h gum nhaaa

Lee Je Yoon
Xem chi tiết
Trần Việt Linh
27 tháng 7 2016 lúc 23:04

Có: \(\frac{P}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\right)\)

\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{6+2\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{6-2\sqrt{5}}}\)

\(=\frac{3+\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}+1\right)^2}}-\frac{3-\sqrt{5}}{\sqrt{20}+\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\frac{3+\sqrt{5}}{2\sqrt{5}+\sqrt{5}+1}-\frac{3-\sqrt{5}}{2\sqrt{5}+\sqrt{5}-1}\)

\(=\frac{3+\sqrt{5}}{3\sqrt{5}+1}-\frac{3-\sqrt{5}}{3\sqrt{5}-1}\)

\(=\frac{\left(3+\sqrt{5}\right)\left(3\sqrt{5}-1\right)-\left(3-\sqrt{5}\right)\left(3\sqrt{5}+1\right)}{\left(3\sqrt{5}+1\right)\left(3\sqrt{5}-1\right)}\)

\(=\frac{9\sqrt{5}-3+15-\sqrt{5}-9\sqrt{5}-3+15+\sqrt{5}}{9\cdot5-1}\)

\(=\frac{24}{44}=\frac{6}{11}\)

=>P=\(\frac{6}{11}\cdot\sqrt{2}=\frac{6\sqrt{2}}{11}\)

Chính xác 100% mink thử bằng máy tính r

mink làm hơi tắt phần nào k hiểu hói mink nhé

Truong_tien_phuong
Xem chi tiết
ngonhuminh
1 tháng 3 2017 lúc 11:37

Xem kỹ lại đề nhé! loại này đề lệch một tý thôi -->Không rút được !

p/s: Tránh truongf hợp làm đến cuối mới biết đề sai.

WonMaengGun
Xem chi tiết
HT.Phong (9A5)
23 tháng 8 2023 lúc 5:49

a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)

\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)

\(=-\left(2-5\right)\)

\(=-\left(-3\right)\)

\(=3\)

b) Ta có:

\(x^2-x\sqrt{3}+1\) 

\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)

Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)

Dấu "=" xảy ra:

\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)

Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)

HaNa
23 tháng 8 2023 lúc 5:48

a)

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)