5 mũ 1+5 mũ 2+5 mũ 3+...+5 mũ 30 chứng minh chia hết cho 6
chứng minh: a = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 30 chia hết cho 6, cho 30, cho 31
\(A=5+5^2+...+5^{30}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)
\(A=30+5\cdot30+...+5^{28}\cdot30\)
\(A=30\cdot\left(1+5+...+5^{28}\right)\)
Vậy A chia hết cho 30
\(A=5+5^2+....+5^{30}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)
\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)
\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)
Vậy A chia hết cho 31
\(A=5+5^2+...+5^{30}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(A=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^{29}\cdot\left(1+5\right)\)
\(A=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)
\(A=6\cdot\left(5+5^3+...+5^{29}\right)\)
Vậy A chia hết cho 6
Cho biểu thức
B=5+5 mũ 1 +5 mũ 2 +........+5 mũ 30
Chứng minh rằng : b chia hết 6; b chia hết 31
C= 1+3+3 mũ 2+ ........+ 3 mũ 11 . Chứng minh rằng : c chia hết cho 13; c chia hết cho 40
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
1 . chứng minh rằng : 30 mũ 5 x 7 - 6 mũ 5 x 5 mũ 3 x 25 x 4 chia hết cho 3
2 . chứng minh đẳng thức : 12 mũ 5 x 8 = 2 mũ 13 x 243
bài 1:cho A=5+5 mũ 2+5 mũ 3+...+5 mũ 2006
CMR:A chia hết cho 120.(cmr là chứng minh rằng)
bài 2:cho B=5+5 mũ 2+5 mũ 3+...+5 mũ 80.
CMR:B chia hết cho 30.
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.
cho C=5+5mũ 2 + 5 mũ 3+.....+5 mũ 20
a)chứng minh c chia hết cho 5
b)chứng minh c chia hết cho 6
c)chứng minh c chia hết cho 1
bài 3
cho C=1+3+3 mũ 2 +...+3 mũ 11.Chứng minh C chia hết 40
cho S = 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + 2 mũ 6 +... + 2 mũ 28 + 2 mũ 29 + 2 mũ 30 . Chứng minh rằng S chia hết cho 7
\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\)
\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\)
\(S=7.\left(2+2^4+...+2^{28}\right)\)
⇒ \(S⋮7\) ( điều phải chứng minh )
S=21+22+23+...+230
S=(21+22+23)+(24+25+26)+...+(228+229+230)
S=7.2+7.24+...+7.228
S=7.(2+24+...+228)
⇒S⋮7
Ta có: \(S=2^1+2^2+2^3+...+2^{28}+2^{29}+2^{30}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{28}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{28}\right)⋮7\)
chứng minh: 5 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.............+5 mũ 49+ 5 mũ 50 chia hết cho 6
Đặt \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{49}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{49}.6\)
\(=6.\left(5+5^3+...+5^{49}\right)⋮6\)
Vậy \(A⋮6\)