Cho phương trình : x2 -4x-3=0 không giải phương trình hãy tính giá trị biểu thức :
A= x21 - x22
Gọi x 1 ; x 2 là nghiệm của phương trình 2 x 2 − 11 x + 3 = 0 . Không giải phương trình, tính giá trị của biểu thức A = x 1 2 + x 2 2
A. 109 4
B. 27
C. − 109 4
D. 121 4
Phương trình 2 x 2 − 11x + 3 = 0 3 = 97 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 11 2 x 1 . x 2 = 3 2
Ta có
A = x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 1 + x 2 ) = 11 2 2 − 2. 3 2 = 109 4
Đáp án: A
Gọi x 1 ; x 2 là nghiệm của phương trình x 2 - 5 x + 2 = 0 . Không giải phương trình, tính giá trị của biểu thức A = x 1 2 + x 2 2
A. 20
B. 21
C. 22
D. 23
Đáp án B
Phương trình x 2 - 5 x + 2 = 0 có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có:
Gọi x 1 ; x 2 là nghiệm của phương trình x 2 − 5 x + 2 = 0 . Không giải phương trình, tính giá trị của biểu thức A = x 1 2 + x 2 2
A. 20
B. 21
C. 22
D. 22
Phương trình x 2 − 5x + 2 = 0 có = ( − 5 ) 2 – 4.1.2 = 17 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = 5 x 1 . x 2 = 2
Ta có
A = x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2 x 1 . x 2 = 5 2 – 2 . 2 = 21
Đáp án: B
Gọi x 1 ; x 2 là nghiệm của phương trình x 2 - 5x + 2 = 0. Không giải phương trình, tính giá trị của biểu thức A = x 1 2 + x 2 2
A. 20
B. 21
C. 22
D. 23
Đáp án B
Phương trình x 2 - 5 x + 2 = 0 có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có:
Cho phương trình 5x2 - 2x - 7 = 0. a) Không giải phương trình, tính tổng và tích hai nghiệm. b) Tính giá trị của biểu thức A = x12 + x22 – x1. x2
a. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{5}\\x_1x_2=-\dfrac{7}{5}\end{matrix}\right.\)
b.
\(A=x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=\left(\dfrac{2}{5}\right)^2-3\left(-\dfrac{7}{5}\right)=\dfrac{109}{25}\)
Cho phương trình x2 + 5x − 4 = 0 . Gọi x1 ; x2 là hai nghiệm của phương trình. Không giải phương trinh, hăy tính giá trị biểu thức
Q = x12 + x22 + 6x1 x 2.
Q=(x1+x2)^2-2x1x2+6x1x2
=(-5)^2+4*(-4)
=25-16=9
Áp dụng Viét có: `{(x_1+x_2=-b/a=-5),(x_1.x_2=c/a=-4):}`
Ta có: `Q=(x_1+x_2)^2+4x_1.x_2`
`<=>Q=(-5)^2+4.(-4)`
`<=>Q=9`
Cho phương trình x^2-3x-2=0 có 2 nghiệm x1,x2 . Khi đó giá trị của biểu thức Q=x21+x22 bằng :
A)53/49
B)7
C)105/49
D)85/7
Lời giải:
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-2\end{matrix}\right.\)
\(Q=x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=3^2-2(-2)=13\)
Cho phương trình 2x^2 - 6x +3 =0
a) chứng tỏ phương trình trên có 2 nghiệm phân biệt x1 x2
b) Không giải phương trình để tìm 2 nghiệm x1, x2, hãy tính giá trị của biểu thưc A= 2x1 +x1.x2 +2x2 phần x12 .x2 +x1.x22
CHo pt x-4x-3=0 có 2 nghiệm phân biệt x1,x2 không giải phương trình hãy tính giá trị của biểu thức A=\(\dfrac{x1^2}{x2}+\dfrac{x2^2}{x1}\)
\(x^2 - 4x - 3 = 0\) có 1.(-3) < 0
=> Phương trình có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et có \(x_1 + x_2 = 4\) \(; x_1x_2 = -3\)
Mà \(A = \dfrac{x_1^2}{x_2} + \dfrac{x_2^2}{x_1}\)
\(= \dfrac{x_1^3 + x_2^3}{x_1x_2}\)
\(= \dfrac{(x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)}{x_1x_2}\)
\(=\dfrac{(x_1+x_2)[(x_1 +x_2)^2 - 3x_1x_2]}{x_1x_2}\)
\(=\dfrac{4.[4^2 - 3.(-3)]}{-3}\)
\(= \dfrac{-100}{3}\)
1) Cho phương trình 5x^2+3x-1=0 có hai nghiệm x1,x2. Không giải phương trình, hãy tính giá trị của biểu thức A=\(\left(3x_1+2x_2\right)\left(3x_2+x_1\right)\)
2) Cho phương trình 7x^2-2x-3=0 có hai nghiệm là x1,x2 tính giá trị của biểu thức
M=\(\dfrac{7x_1^2-2x_1}{3}+\dfrac{3}{7x_2^2-2x_2}\)
`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`
Có: `A=(3x_1+2x_2)(3x_2+x_1)`
`A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`
`A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`
Vậy `A=-13/25`
____________________________________________________
`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`
Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`
`M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`
`M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`
`M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`
`M=6/[x_2(7x_2-2)]` `(1)`
Có: `x_1+x_2=2/7=>x_1=2/7-x_2`
Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`
`<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`
`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`
`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`
Vậy `M=2`