Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dieu Linh Dang
Xem chi tiết
Thanh Hoàng Thanh
13 tháng 3 2022 lúc 6:45

undefined

Thơ Nụ =))
Xem chi tiết

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

Dieu Linh Dang
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 21:34

\(=-7x^2y+3xy+4x\)

MInemy Nguyễn
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2023 lúc 10:12

a: =-1/5x^5y^2

b: =-9/7xy^3

c: =7/12xy^2z

d: =2x^4

e: =3/4x^5y

f: =11x^2y^5+x^6

Lizy
Xem chi tiết

\(2y\ge xy+4\ge2\sqrt{4xy}=4\sqrt{xy}\)

\(\Rightarrow y^2\ge4xy\Rightarrow\dfrac{y}{x}\ge4\)

\(P=\dfrac{xy}{x^2+2y^2}=\dfrac{1}{\dfrac{x}{y}+\dfrac{2y}{x}}=\dfrac{1}{\dfrac{1}{16}\left(\dfrac{16x}{y}+\dfrac{y}{x}\right)+\dfrac{31}{16}.\dfrac{y}{x}}\)

\(\Rightarrow P\le\dfrac{1}{\dfrac{1}{16}.2\sqrt{\dfrac{16xy}{xy}}+\dfrac{31}{16}.4}=\dfrac{4}{33}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;4\right)\)

Sỹ Tiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 9 2023 lúc 20:27

a: (3x^2-4)(x+3y)

=3x^2*x+3x^2*3y-4x-4*3y

=3x^3+9x^2y-4x-12y

b: (c+3)(x^2+3x)

=c*x^2+c*3x+3x^2+9x

=cx^2+3cx+3x^2+9x

c: (xy-1)(xy+5)

=xy*xy+5xy-xy-5

=x^2y^2+4xy-5

d: (3x+5y)(2x-7y)

=3x*2x-3x*7y+5y*2x-5y*7y

=6x^2-21xy+10xy-35y^2

=6x^2-11xy-35y^2

e: -(x-1)(-x^2+2y)

=(x-1)(x^2-2y)

=x^3-2xy-x^2+2y

f: (-x^2+2y)(x^2+2y)

=(2y)^2-x^4

=4y^2-x^4

Duong Thi Nhuong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 13:46

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-2xy+xy-2y^2}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}:\dfrac{x+y}{2x^2+y+2}\)

\(=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right)\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\cdot\dfrac{2x^2+y+2}{x+y}\)

\(=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}\)

\(=\dfrac{-\left(2x^2+y-2\right)}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{x+1}{2x^2+y-2}=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(x+y\right)}\)