Phân tích đa thức sau thành nhân tử
(2x +1 )2 - ( x-1)
Phân tích đa thức sau thành nhân tử:
(2x+1)2 - (x-1)2
Về mở sách học lại 7 hằng đẳng thức đi nha bạn. Kiến thức cơ bản không làm được là mai sau thi cấp 3 trượt thẳng cổ đấy
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\\ \Leftrightarrow\left(x+2\right)3x\)
Đề lỗi hay sao í bạn. Bạn xem lại đề!
phân tích đa thức sau thành nhân tử
a) (x+2)(x2-2x+1)
Bài 1: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 1, 2
1) x3 – 2x – x 2) 6x2 + 12xy + 6y2
3) 2y3 + 8y3 + 8y 4) 5x2 – 10xy + 5y2
Bài 2: Phân tích các đa thức sau thành nhân tử
HD: Dùng pp đặt nhân tử chung phối hợp dùng hằng đẳng thức số 3, 6, 7
1) x3 – 64x 2) 8x2y – 18y 3) 24x3 – 3
Bài 3: Phân tích các đa thức sau thành nhân tử
HD: Dùng phương pháp nhóm hạng tử phối hợp dùng hằng đẳng thức
1) 5x2 + 10x + 5 – 5y2 2) 3x3 – 6x2 + 3x – 12xy2
3) a3b – ab3 + a2 + 2ab + b2 4) 2x3 – 2xy2 – 8x2 + 8xy
Giup mik với mik cần gấp lắm!
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
Bài 1;
1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)
2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)
3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)
4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)
3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)
Bài 3:
1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)
2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)
3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)
Phân tích các đa thức sau thành nhân tử x^4+x^3+2x^2+x+1
x4 + x3 + 2x2 + x + 1
= (x4 + 2x2 + 1) + (x3 + x)
= (x2 + 1)2 + x (x2 + 1)
= (x2 + 1) ( x2 + 1 + x)
= (x2 + 1) (x + 1)2
Trả lời:
x4 + x3 + 2x2 + x + 1
= ( x4 + 2x2 + 1 ) + ( x3 + x )
= ( x2 + 1 )2 + x ( x2 + 1)
= ( x2 + 1 ) ( x2 + 1 + x )
= ( x2 + 1) ( x + 1 )2
Phân tích đa thức thành nhân tử
(x-1)\(^2\)-2(x-1)(2x+1)+(2x+1)\(^2\)
`(x-1)^2-2(x-1)(2x+1)+(2x+1)^2`
`=(x-1-2x-1)^2`
`=(-x-2)^2`
\(\left(x-1\right)^2-2\left(x-1\right)\left(2x+1\right)+\left(2x+1\right)^2\)
\(=\left(x-1-2x-1\right)^2=\left(-x-2\right)^2=\left(x+2\right)^2\)
Phân tích các đa thức sau thành nhân tử:
1. \(x^3-x^2+5x+125\)
2. \(x^2+2x^2-6x-27\)
1.
= (x^3 + 125 ) -(x^2 +5x)
=(x +5) (x^2 -5x +25) -x(x+5)
=(x+5)(x^2 -5x +25 -x)
=(x+5)(x^2 -6x +25)
2.
= (x^3 -27) + (2x^2 -6x)
=(x-3) (x^2 +3x +9) +2x (x-3)
=(x-3) (x^2 +3x +9 +2x)
=(x-3) (x^2 +5x +9)
Câu 1 làm tính nhân A) 2x . 5xy B) x.(x+7) Câu 2 phân tích đa thức sau thành nhân tử 3xy + 11xz
\(1,\\ a,=10x^2y\\ b,=x^2+7x\\ 2,\\ =x\left(3y+11z\right)\)
Phân tích đa thức thành nhân tử:
\(x^3+2x^2+2x+1\)
\(=x^3+x^2+x^2+x+x+1=x^2\left(x+1\right)+x\left(x+1\right)+x+1\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
x3 + 2x2 + 2x + 1
= (x3 + 1) + (2x2 + 2x)
= (x + 1)(x2 + x + 1) + 2x(x + 1)
= (x + 1)(x2 + x + 1 + 2x)
= (x + 1)(x2 + 3x + 1)
Chúc bạn học tốt
Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+\left(2x^2+2x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)