tìm GTNN or GTLN của biểu thức
A=(2x-1)^2+(x+2)^2
Tìm GTNN, GTLN của biểu thức:
A=\(-\dfrac{1}{3}x^2+2x\)
Bài này chỉ tìm được GTLN thôi nhé bạn.
Ta thấy \(A=-\dfrac{1}{3}x^2+2x\)
\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)
\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)
\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)
Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
Tìm GTNN và GTLN của biểu thức P=(2x+1)/(x^2+2)
Nháp:
\(P=\dfrac{2x+1}{x^2+2}\) \(\Leftrightarrow P\left(x^2+2\right)=2x+1\) \(\Leftrightarrow Px^2-2x+2P-1=0\) (*)
*Cần chú ý: Với bất kì đa thức bậc hai \(f\left(x\right)=ax^2+bx+c\) nào, muốn \(f\left(x\right)\) có nghiệm thì \(b^2-4ac\ge0\) (Mình không chứng minh ở đây nhé, bạn chỉ cần nhớ để nháp là đủ rồi.)
Do đó để (*) có nghiệm thì \(\left(-2\right)^2-4P\left(2P+1\right)\ge0\) \(\Leftrightarrow4-8P^2+4P\ge0\) \(\Leftrightarrow\left(2P+1\right)\left(1-P\right)\ge0\) \(\Leftrightarrow\dfrac{-1}{2}\le P\le1\)
\(P=-\dfrac{1}{2}\Leftrightarrow x=-2\), \(P=1\Leftrightarrow x=1\).
Ý tưởng:
Từ thông tin ở phần nháp, ta sẽ đưa tử của phân thức P về dạng chứa \(\left(x+2\right)^2\) và \(-\left(x-1\right)^2\) vì P đạt min tại \(x=-2\) và max tại \(x=1\), rồi tìm cách biến đổi các số hạng bên ngoài để ra dạng \(kA^2+c\) (\(k,c\) là các hằng số)
Trình bày:
\(P=\dfrac{-x^2+2x-1+x^2+2}{x^2+2}=\dfrac{-\left(x-1\right)^2}{x^2+2}+1\)
Dễ thấy \(-\left(x-1\right)^2\le0\), \(x^2+2>0\) nên \(\dfrac{-\left(x-1\right)^2}{x^2+2}\le0\) \(\Leftrightarrow P\le1\).
ĐTXR \(\Leftrightarrow x=1\)
Mặt khác, \(P=\dfrac{\dfrac{x^2}{2}+2x+2-\dfrac{x^2}{2}-1}{x^2+2}\)\(=\dfrac{\dfrac{1}{2}\left(x+2\right)^2-\dfrac{1}{2}\left(x^2+2\right)}{x^2+2}\) \(=\dfrac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\). Do \(\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\) \(\Leftrightarrow P\ge-\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow x=-2\).
Vậy GTNN, GTLN của P lần lượt là \(-\dfrac{1}{2};1\), lần lượt xảy ra khi \(x=-2;x=1\)
Lời giải:
$P=\frac{2x+1}{x^2+2}$
$\Rightarrow P(x^2+2)=2x+1$
$\Rightarrow Px^2-2x+(2P-1)=0(*)$
Vì $P$ tồn tại nên PT $(*)$ có nghiệm.
$\Rightarrow \Delta'=1-P(2P-1)\geq 0$
$\Leftrightarrow 2P^2-P-1\leq 0$
$\Leftrightarrow (P-1)(2P+1)\leq 0$
$\Leftrightarrow \frac{-1}{2}\leq P\leq 1$
Vậy $P_{\min}=\frac{-1}{2}$ và $P_{\max}=1$
Tìm GTLN và GTNN của biểu thức sau : 4x+1/ x^2+2x+2
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
\(P=\dfrac{4x+1}{x^2+2x+2}=\dfrac{x^2+2x+2-x^2+2x-1}{x^2+2x+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2x+2}\le1\)
"=" xảy ra <=> x - 1 = 0 <=> x = 1
Vậy Max P = 1 <=> x = 1
P = \(\dfrac{4x+1}{x^2+2x+2}=\dfrac{-4x^2-8x-8+4x^2+12x+9}{x^2+2x+2}=-4+\dfrac{\left(2x+3\right)^2}{x^2+2x+2}\)
\(\ge-4\)
"=" xảy ra <=> 2x + 3 = 0 <=> x = -1,5
Vậy Min P = -4 <=> x = -1,5
Tìm GTNN của biểu thức A= x^2-6x+10; B= 3x^2-12x+1; Tìm GTLN của biểu thức C= -x^2+2x+5; D= 4x-x^2; E = x.(x-3)(x-4)(x-7)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
tìm gtln và gtnn của biểu thức p=(x^2-2x-2)/(x^2+x+1)
\(P=\dfrac{x^2-2x-2}{x^2+x+1}=\dfrac{2\left(x^2+x+1\right)-\left(x^2+4x+4\right)}{x^2+x+1}=2-\dfrac{\left(x+2\right)^2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le2\)
\(P_{max}=2\) khi \(x=-2\)
\(P=\dfrac{x^2-2x-2}{x^2+x+1}=\dfrac{-2\left(x^2+x+1\right)+3x^2}{x^2+x+1}=-2+\dfrac{3x^2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge-2\)
\(P_{min}=-2\) khi \(x=0\)
Dự đoán: $Px^2+Px +P-x^2+2x+2=0\\\to x^2(P-1) +x(P+2)+(P+2)=0$ $\Delta =(P+2)^2-4(P-1)(P+2)=(P+2)(P+2-4P+4)=(P+2)(6-3P)\ge 0$ giải BPT Ta được: $-2\le P \le 2$ $\to P_{min}=-2,P_{max}=2$
1. Cho x là số thực không nhỏ hơn 2. Tìm GTNN của biểu thức sau:
A= \(\dfrac{2}{-x^2-2x+5}\)
2. Tìm GTLN của biểu thức sau:
B= \(\dfrac{-x^2-x-1}{x^2}\)
Câu 2:
ĐKXĐ: x<>0
\(B=\dfrac{-x^2-x-1}{x^2}\)
\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)
\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)
\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)
Dấu '=' xảy ra khi 1/x+1/2=0
=>1/x=-1/2
=>x=-2
Tìm GTLN,GTNN của biểu thức
a/A=(2x-1)^2+(x+2)
b/B=x^2-5x
c/C=4-x^2+2x
a) ta có A = (2x-1)2+ ( x+2)= 4x2- 4x +1 +x+2= 4x2 -3x +3 = 4x2-2*2x* \(\frac{3}{4}\)+ \(\frac{9}{16}\)+ \(\frac{39}{16}\)
= (2x-\(\frac{3}{4}\))2+ \(\frac{39}{16}\)
=> (2x-\(\frac{3}{4}\))2>=0
=> A >= \(\frac{39}{16}\)
dấu = sảy ra khi x=\(\frac{3}{2}\)
vậy A(min) = \(\frac{39}{16}\) khi x=\(\frac{3}{2}\)
b) lm tương tự B(min)= -\(\frac{25}{4}\) khi x= \(\frac{5}{2}\)
c) đặt dấu trừ ra ngoài vậy C(max)=0 khi x=2