Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Kiệt Nguyễn
7 tháng 7 2020 lúc 14:34

Đặt \(K=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)

\(\Rightarrow2K=2a\sqrt{b^3+1}+2b\sqrt{c^3+1}+2c\sqrt{a^3+1}=\)\(2a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}+2b\sqrt{\left(c+1\right)\left(c^2-c+1\right)}\)\(+2c\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\)\(\le a\left[\left(b+1\right)+\left(b^2-b+1\right)\right]+b\left[\left(c+1\right)+\left(c^2-c+1\right)\right]\)\(+c\left[\left(a+1\right)+\left(a^2-a+1\right)\right]\)(Theo BĐT AM - GM)

\(=a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)\)\(=ab^2+bc^2+ca^2+6\)

Đặt \(M=ab^2+bc^2+ca^2\)

Không mất tính tổng quát, giả sử \(a\ge c\ge b\)thì ta có \(b\left(a-c\right)\left(c-b\right)\ge0\Leftrightarrow abc+b^2c\ge ab^2+bc^2\)

\(\Leftrightarrow ab^2+bc^2+ca^2\le abc+b^2c+ca^2\)

hay \(M\le abc+b^2c+ca^2\le2abc+b^2c+ca^2=c\left(a+b\right)^2\)\(=4c.\frac{a+b}{2}.\frac{a+b}{2}\le\frac{4}{27}\left(c+\frac{a+b}{2}+\frac{a+b}{2}\right)^3\)\(=\frac{4\left(a+b+c\right)^3}{27}=4\)

\(\Rightarrow2K\le10\Rightarrow K\le10\)

Vậy \(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)=\left(2,0,1\right)\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
7 tháng 7 2020 lúc 15:00

Kiệt cop sai đáp án rồi kìa :))
Đoạn cuối không giả sử \(a\ge c\ge b\) được đâu nhá

Mà phải giả sử b là số nằm giữa a và c

Khi đó:

\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2+ac\le ab+bc\)

\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2=b\left(a^2+ac+c^2\right)\)

\(\le b\left(a^2+2ac+c^2\right)=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta chứng minh \(b\left(3-b\right)^2\le4\Leftrightarrow\left(b-1\right)^2\left(b-4\right)\le0\) *đúng *

Vậy ............................

Khách vãng lai đã xóa
Kiệt Nguyễn
7 tháng 7 2020 lúc 15:21

chắc là sai ngay...

Khách vãng lai đã xóa
Wan
Xem chi tiết
Lầy Văn Lội
6 tháng 9 2017 lúc 19:08

a) \(BĐT\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\sqrt{\frac{c\left(a-c\right)}{ab}}+\sqrt{\frac{c\left(b-c\right)}{ab}}\le1\)

\(\Leftrightarrow\sqrt{\frac{c}{b}\left(1-\frac{c}{a}\right)}+\sqrt{\frac{c}{a}\left(1-\frac{c}{b}\right)}\le1\)

Áp dụng AM-GM:\(VT\le\frac{1}{2}\left(\frac{c}{b}+1-\frac{c}{a}+\frac{c}{a}+1-\frac{c}{b}\right)=1\left(đpcm\right)\)

Dấu = xảy ra khi (a+b).c=ab

b) \(2+b+c+2+b+c\ge2\sqrt{\left(b+1\right)\left(c+1\right)}+2+b+c=\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge4\left(1+a\right)\)

\(\Leftrightarrow b+c\ge2a\)

Tiến Dũng Trương
5 tháng 9 2017 lúc 22:12

cau a) dung cosi

\(\sqrt{c\left(a-c\right)}\le\frac{a-c+c}{2}\) ap dung cosi cho hai so c va a-c

tuong tu voi cac so khac

\(BT\le\frac{a-c+c}{2}+\frac{b-c+c}{2}-\frac{a+b}{2}\)(bt la VT cua de)

=> DPCM

b)

dung cosi nhu cau a

lam nhanh luon

\(\sqrt{1+b}\ge\frac{b+1+1}{2}\)

tuong tu

\(BT\ge\frac{b+2}{2}+\frac{c+2}{2}\ge a+2\)

<=> b+c>=2a

Lầy Văn Lội
6 tháng 9 2017 lúc 13:18

đánh dấu *

Phương Nguyễn Ngọc Mai
Xem chi tiết
Thắng Nguyễn
18 tháng 6 2017 lúc 11:28

Chứng minh điều ngược lại đúng tức là. Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le​\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)\le4\left(a+1\right)=VP\)

\(\Rightarrow\left(\sqrt{b+1}+\sqrt{1+c}\right)^2\le4\left(a+1\right)\)

\(\Rightarrow\sqrt{b+1}+\sqrt{1+c}\le\sqrt{4\left(a+1\right)}=2\sqrt{a+1}\)

BĐT cuối đúng hay ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

Chứng minh điều ngược lại đúng, tức là :Cho a,b,c>0 thỏa \(b+c=2a\) thì \(\sqrt{b+1}+\sqrt{c+1}\le2\sqrt{a+1}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{b+1}+\sqrt{c+1}\right)^2\)

\(\le\left(1+1\right)\left(b+1+c+1\right)\)

\(=2\left(b+c+2\right)=2\left(2a+2\right)\)

\(=4\left(a+1\right)=2^2\sqrt{\left(a+1\right)^2}=VP^2\)

Vì \(VT^2\le VP^2\Rightarrow VT\le VP\)

BĐT kia đúng nên ta có ĐPCM

Thắng Nguyễn
18 tháng 6 2017 lúc 11:35

sr bn mk tưởng chưa gửi dc nên gửi lại, Sorry

Phạm Tiến Minh
Xem chi tiết
Thảo Phương
Xem chi tiết
phan tuấn anh
Xem chi tiết
ducquang050607
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 22:15

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24

Hạ Mặc Tịch
Xem chi tiết
Akai Haruma
13 tháng 5 2021 lúc 21:51

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\((a+b)^2+\frac{a+b}{2}=(a+b)[(a+b)+\frac{1}{2}]\)

\(=(a+b)[(a+\frac{1}{4})+(b+\frac{1}{4})]\geq 2\sqrt{ab}(\sqrt{a}+\sqrt{b})=2a\sqrt{b}+2b\sqrt{a}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{4}$