CMR:Bình phương của một số lẻ chia 4 dư 1
CMR:bình phương của 2 số nguyên tố khác 2 và khác 3 khi chia cho 12 đều dư 1
42 = 16 . 16 chia 12 dư 4 . Vậy thằng cho đề bị KHÙNG
CMR
a, bình phương của một số lẻ chia cho 4 thi dư 1
b,bình phương của một số lẻ chia cho 8 thì dư 1
a) Một số lẻ thì có dạng 2a+1 (a thuộc N).
Ta có: (2a+1)2 = 4a2 + 4a +1
4a2 và 4a chia hết cho 4, cho nên 4a2 + 4a +1 chia 4 dư 1 => điều phải chứng minh
b) Tương tự: (2a+1)2 = 4a2 + 4a +1 = 4a(a+1) +1
Ta thấy a+1 là số chẵn => 4(a+1) chia hết cho 8 => 4a(a+1) +1 chia 8 dư 1 => điều phải chứng minh
a) Gọi số tự nhiên lẻ là 2x+1.
=>Bình phương của số lẻ là: (2x+1)2=4x2+4x+1=4x(x+1)+1=B(4)+1
=>Chia 4 dư 1.
C/m :
a) Bình phương của 1 số nguyên lẻ chia cho 4 thì dư 1
b) Bình phương của 1 số nguyên lẻ chia cho 8 thì dư 1
a)gọi \(2x+1\) là công thức tổng quát của số nguyên lẻ. ( x nguyên )
ta có : \(\left(2x+1\right)^2=4x^2+4x+1=4x\left(x+1\right)+1\)
ta thấy \(4x\left(x+1\right)⋮4\) \(\forall x\) mà 1 lại ko chia hết cho 4 \(\Rightarrow\left(2x+1\right)^2:4\)dư 1 \(\Rightarrow dpcm\)
Chứng minh rằng
a)bình phương của 1 số lẻ chia cho 4 dư 1
b)bình phương của 1 số lẻ chia cho 8 dư 1
a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)
Bình phương của số lẻ là :
\(\left(2k+1\right)^2=4k^2+4k+1\)
Mà \(4k^2+4k⋮4\)
\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1
\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1
Chứng minh rằng:
a) Bình phương của một số lẻ chia cho 4 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có:
(2k+1)^2=4k^2+4k+1
Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.
Hay (2k+1) chia 4 dư 1
b) Bình phương của một số lẻ chia cho 8 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có: (2k+1)^2=4k^2+4k+1
Ta lại có: 4k^2+4k chia hết cho 4
4k^2+4k chia hết cho 2
Suy ra 4k^2+4k chia hết cho 8
vậy 4k^2+4k+1 chia 8 dư 1
hay (2k+1)^2 chia 8 dư 1
B1: Cmr: a) bình phương của một số nguyên lẻ chia cho 4 thì dư 1
b) bình phương của một số nguyên lẻ chia cho 8 thì dư 1
B2: cmr: a) n2(n+1) + 2n(n+1) chia hết cho 6 với mọi n
b) (2n-1)3 - (2n - 1) chia hết cho 8
Câu 1: Tìm bốn số tự nhiên liên tiếp mà hiệu của hai số chẵn cho hai số lẻ bằng 25
Câu 2:Một số chính phương chẵn ,một số chính phương lẻ khi chia cho 4 dư mấy.
1.cmr ko có số hữu tỉ nào bình phương = 5;=12
2. cmr:bình phương của một số hữu tỉ là 1 số nguyên thì số đó là số nguyên
một số chính phương lẻ và một số chính phương chẵn chia 4 dư mấy
Ta lấy ví dụ:
Số chính phương lẻ là: 9
Số chính phương chẵn là: 4
9 : 4 = 2 ( dư 1 )
4 : 4 = 1
Vậy số chính phương lẻ chia 4 dư 1
Số chính phương chẵn chia hết cho 4
chứng minh rằng bình phương của 1 số lẻ chia cho 4 thì dư 1
số lẻ được viết dưới dạng 2k+ 1
bình phương của số lẻ: (2k+1)2 = 4k2 + 4k + 1
Mà 4k2 + 4k chia hết cho 4
=> 4k2 + 4k + 1 chia 4 dư 1
=> bình phương cua 1 số lẻ chia cho 4 dư 1