cm 1/2+2/2^2+3/2^3+4/2^4+...+100/2^100<2
cm 1/2^2+1/3^2+1/4^2+...+1/100^2<1/3/4
Cm 1/3 - 2/3^2 + 3/3^3 - 4/3^4 + ... + 99/3^99 - 100/3^100 < 3/16
Cm:\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
cm: 1/2^2+1/3^2+1/4^2+...+1/100^2< 1
Vì \(\dfrac{1}{a}\left(a>1\right)< 1với\forall a\)
mà \(2^2;3^2;.....;100^2>1\)
\(=>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\)
Đặt :
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+......+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
C=1/2^2+1/3^2+1/4^2+...+1/19^2+1/20^2
CM C <3/4
D=1/2^2+1/3^2+1/4^2+...+1/100^2
CM D<1
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
A=1/2^2 +1/2^4 +1/2^6 +1/2^8 +⋯+1/2^100 CM: A<1/3
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow4A=2^2\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}\right)=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)
\(\Rightarrow3A=4A-A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^2}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{100}}=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow A=\left(1-\dfrac{1}{2^{100}}\right):3=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}< \dfrac{1}{3}\left(đpcm\right)\)
CM rằng : A = 1+1/3^2+1/4^2+…+1/100^2 < 1
cứuuuuu 🫠
Sửa đề: A=1/2^2+...+1/100^2
1/2^2<1/1*2
1/3^2<1/2*3
...
1/100^2<1/99*100
=>A<1-1/2+1/2-1/3+...+1/99-1/100
=>A<99/100<1
CMR:
a)1/10^2 +1/11^2+1/12^2+...+1/100^2 >3/4
b)1/2^2+1/3^2+1/4^2+...+1/100^2<99/100
c)1/2^2+1/3^2+1/4^2+...+1/100^2<3/4