Tìm m để phương trình x2 - 3x + 2 - m = 0 có 2 nghiệm x1 x2 thoả mãn x1(1-2x2) + x2(1-2x1)=2m
Cho pt xã -4x4 m=0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức 2x1 + x2 = 1 Cho pt: 2x2 3x-2m +3 = 0 ("). Tìm m để phương trình (") có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1/x2 + xz/x1 =3 Cho pt xã 4x - m + 3 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm x1, x2 thỏa mãn hệ thức x1-x2=7 Giải gấp chi tiết giúp e vs ạ
Tìm m để phương trình
a) x2+2x+m=0 có hai nghiệm x1,x2 thỏa mãn x1=3x2
b) x2-(m+5)x-m+6=0 có hai nghiệm x1,x2 thỏa mãn 2x1+3x2=13
c) x2-2(m+1)x+m2-2m+29=0 có hai nghiệm x1,x2 thỏa mãn x1=2x2
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn:
x1(x1 -2x2) + x2(x2 -3x1) = 9
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Cho phương trình: x2 - 2(m+1)x+2m+1=0 (1)
b, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:
x21 + (x1 + x2)x2 - 2x1x2 =7
c, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn
x1 - 2x2 =3
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)
\(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)
\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)
Vậy ...
\Delta'=1^2-m=1-mΔ′=12−m=1−m
phương trình có 2 nghiệm <=>\Delta'\ge0Δ′≥0
<=>1-m\ge01−m≥0
<=>m\le1m≤1
+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1+x2=−2(1)x1x2=m(2)
Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1+2x2=1(3)
từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1+x2=−23x1+2x2=1 <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1=5x2=−7. Thay vào (2) : 5.(-7)= m <=> m= -35
Tìm m để phương trình x^2 − 2m x + m - 3 = 0 có hai nghiệm phân biệt x1, x2 thoả mãn (x1-2x2)^2+x2-2mx1=20
Cho phương trình: mx² - 2x + m - 1 = 0 Tìm m để phương trình có nghiệm duy nhất Tìm m để phương trình có 2 nghiệm phân biệt Tìm m để phương trình có hai nghiệm x1,x2 thoả 3x1x2 - 2x1 - 2x2 = -2 Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
giai giup minh vs
Tìm giá trị của M để phương trình 2x2 -5x + 2m - 1= 0 có hai nghiệm phân biệt x1, x2 thoả mãn 1/ x1 + 1/x2 = 5/2
2x2-5x + 2m - 1 = 0 ( 1)
Dental = (-5)2 - 4*2*( 2m - 1)
= 25 - 16m + 8
= 33 - 16m
Phương trình (1) có 2 nghiệm phân biệt khi :
33 - 16m > 0
- 16m >-33
m < 33/16
Theo hệ thức vi-ét ta có:
x1 + x2 = -b/a = 5/2
x1x2 = c/a =2m - 1/2
Theo bài ch0 :1/x1 + 1/x2 = 5/2
<=>2( x2 + x1 ) = 5x1x2
<+> 2( 5/2 ) + 55 ( 2m - 1 ?2
<+> 5 = 10m -5?2
<+>
<=>2( x2 + x1 ) = 5x1x2
<=> 2( 5/2 ) = 5 ( 2m - 1 /2 )
<=> 5 - 10m + 5/2 = 0
<=> 10 - 20m + 5 = 0
<=> 15 - 20m = 0
<=> -20m = -15
<=> m = 5/4
Vậy m = 5/4 thỏa mãn yêu cầu bài toán
( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )
cho phương trình x^2 - 2(m+2)x + m + 1 =0 (m là tham số). tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn hệ thức x1(1-2x2) + x2(1-2x1) =m^2
Cho phương trình x2 - 2(m + 1) + m2 + 1 = 0, với m là tham số. Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 (x1<x2) thoả mãn :
(2x2 - 3)2 - (2x2 - 3)2 = 32m - 16
Cho phương trình x2 - 2(m + 3)x + m2 + 3 = 0 Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn (2x1 - 1)(2x2 - 1) = 9