Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tth_new
Xem chi tiết
Trần Phúc Khang
12 tháng 6 2019 lúc 11:45

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

Lê Nhật Khôi
12 tháng 6 2019 lúc 12:06

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

tth_new
13 tháng 6 2019 lúc 8:18

Sau đây là lời giải sử dụng SOS của em,mọi người xem thử ạ!

Bớt \(\frac{4}{3}\) ở mỗi vế,ta cần chứng minh:

\(\frac{a^2+b^2+c^2-ab-bc-ca}{ab+bc+ca}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-\frac{3}{2}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{8}{9}.\Sigma_{cyc}\frac{\left(a-b\right)^2}{2\left(b+c\right)\left(c+a\right)}\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(a-b\right)^2}{2}\left(\frac{1}{ab+bc+ca}-\frac{8}{9\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca+9c^2\right)\left(a-b\right)^2}{18\left(ab+bc+ca\right)\left(b+c\right)\left(c+a\right)}\ge0\)

BĐT đúng do a, b, c là các số thực dương. Ta có Q.E.D

P/s: Đúng không ạ?:3

tth_new
Xem chi tiết
Trần Phúc Khang
30 tháng 5 2019 lúc 13:45

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Trần Phúc Khang
30 tháng 5 2019 lúc 14:28

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)

Hoàng Anh Nguyễn Văn
Xem chi tiết
triệu lâm nhi
29 tháng 6 2017 lúc 20:20

phải chứng minh

Hoàng Anh Nguyễn Văn
29 tháng 6 2017 lúc 21:14

chứng minh nó thì phải cm am-gm 2 số sau đó là 4 số @@ dài lắm

Minh Hoàng Phan
Xem chi tiết
Trần Minh Hoàng
30 tháng 5 2021 lúc 21:27

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

missing you =
30 tháng 5 2021 lúc 21:19

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

Kurosaki Akatsu
Xem chi tiết
Hoàng Minh Hoàng
5 tháng 8 2017 lúc 21:23

a/(b+c)+c/(a+d)=a^2+ad+c^2+bc/(a+d)(b+c)>=4(a^2+ad+c^2+bc)/(a+b+c+d)^2(BĐT 1/xy>=4/(x+y)^2

Tương tự rồi cộng lại ta có a/b+c+c/a+d+b/c+d+d/a+b>=4(a^2+b^2+c^2+d^2+ad+bc+ab+cd)/(a+b+c+d)^2=A

>>>Ta sẽ chứng minh A>=1/2 hay 2(a^2+b^2+c^2+d^2+ab+bc+cd+da)>=(a+b+c+d)^2

 tương đương với a^2+b^2+c^2+d^2-2ac-2bd>=0<<->>(a-c)^2+(b-d)^2>=0(luôn đúng)(đpcm)

Dấu = xảy ra khi a=c và b=d

Nguyễn Thiều Công Thành
6 tháng 8 2017 lúc 8:30

đây là Nesbit 4 số

nếu như gặp bđt Nesbit thì làm thế này:

đặt \(B=\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\)

\(C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b}\)

\(B+C=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)

\(A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\ge4\)(theo cô si)

\(A+C=\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)

\(\Rightarrow2A+B+C\ge8\Rightarrow2A+4\ge8\Rightarrow A\ge2\)

dấu bằng khi a=b=c=d

zZz Cool Kid_new zZz
Xem chi tiết
tth_new
21 tháng 3 2020 lúc 14:16

Cho a = b = c = 1 thử xem:P

Khách vãng lai đã xóa
Hoàng Như Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 2 2022 lúc 23:31

#include <bits/stdc++.h>

using namespace std;

long long n,i,s;

int main()

{

cin>>n;

if (n%2==0)

{

s=1;

for (i=1; i<=n; i++)

if (i%2==0) s=s*i;

cout<<s;

}

else 

{

s=1;

for (i=1; i<=n; i++)

if (i%2==1) s=s*i;

cout<<s;

}

return 0;

}

:vvv
Xem chi tiết
Akai Haruma
17 tháng 3 2021 lúc 12:53

Dựa vào $a,b,c>0$ và $abc=1$ thì không tính được giá trị của biểu thức trên nhé em. Em chỉ có thể tính được giá trị nhỏ nhất của nó thôi.

Vu Tuan Son
Xem chi tiết