Cho x,y,z>0 và xyz=1. CMR: \(\frac{x}{y^3+2}+\frac{y}{z^3+2}+\frac{z}{x^3+2}\ge1\)
Cho (x+y+z)2= x2+y2+z2voi x,y,z la ba so khac 0
CMR:
$\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}$
1/x3+1/y3+1/z3=3/xyz
1. Cho a,b,c > 0. Cmr: a) \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ca}+\frac{ab}{c^2+2ab}\le1\)
b) \(\frac{ab^2}{a^2+2b^2+c^2}+\frac{bc^2}{b^2+2c^2+a^2}+\frac{ca^2}{c^2+2a^2+b^2}\le\frac{a+b+c}{4}\)
2. Cho \(x,y,z>0;x+\frac{y}{3}+\frac{z}{5}\ge3;\frac{y}{3}+\frac{z}{5}\ge2;\frac{z}{5}\ge1.MaxP=x^2+y^2+z^2\)
3. Cho \(x>0;y\ge2;2x+y+xy\ge6.MinP=x^3+y^2\)
4. Cho \(0< \alpha< \beta< \gamma\). Giả sử x,y,z > 0 TM \(z\ge\gamma;\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}+\frac{xyz}{\alpha\beta\gamma}=4;\frac{y}{\beta}+\frac{z}{\gamma}+\frac{yz}{\beta\gamma}=3.MinP=x^3+y^3+z^3\)
Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.
Bài 1:
a)
\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
b)
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)
\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)
Áp dụng BĐT AM-GM:
\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)
\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)
Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2/Áp dụng BĐT Bunyakovski:
\(\left(x^2+y^2+z^2\right)\left(1^2+3^2+5^2\right)\ge\left(x+3y+5z\right)^2\)
\(\Rightarrow P\ge\frac{\left(x+3y+5z\right)^2}{35}\) (*)
Ta có: \(x+3y+5z=x.1+\frac{y}{3}.9+\frac{z}{5}.25\)
\(=\frac{16z}{5}+8\left(\frac{y}{3}+\frac{z}{5}\right)+1\left(\frac{z}{5}+\frac{y}{3}+x\right)\)
\(\ge16+8.2+1.3=35\). Thay vào (*) là xong.
Đẳng thức xảy ra khi x = 1; y =3; z = 5
No choice teen, Akai Haruma, Arakawa Whiter, Phạm Lan Hương, soyeon_Tiểubàng giải, tth, Nguyễn Văn Đạt
@Nguyễn Việt Lâm
giúp em với ạ! Cần gấp lắm! Thanks nhiều!
Cho x,y,z > 0 và \(xyz\ge1\)
CMR: \(\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{y^5+z^2+x^2}+\frac{z^5-z^2}{z^5+x^2+y^2}\ge0\)
dinh lam nhung thoi vi chac chan se con nguoi vao lam ho :)
Áp dụng BĐT AM-GM ta có:
\(\frac{4\left(x^5-x^2\right)}{x^5+y^2+z^2}+1=\frac{5x^5-4x^2+y^2+z^2}{x^5+y^2+z^2}=\frac{3x^5+\left(2x^5+y^2+z^2-4x^2\right)}{x^5+y^2+z^2}\)
\(\ge\frac{3x^5+4\sqrt[4]{x^{10}y^2z^2}-4x^2}{x^5+y^2+z^2}\ge\frac{3x^5}{x^5+y^2+z^2}=\frac{3x^4}{x^4+\frac{y^2+z^2}{x}}\ge\frac{3x^4}{x^4+yz\left(y^2+z^2\right)}\ge\frac{3x^4}{x^4+y^4+z^4}\)
suy ra: \(\frac{x^5-x^2}{x^5+y^2+z^2}\ge\frac{3}{4}.\frac{x^4}{x^4+y^4+z^4}-\frac{1}{4}\)
tương tự ta có: \(\frac{y^5-y^2}{y^5+z^2+x^2}\ge\frac{3}{4}.\frac{y^4}{x^4+y^4+z^4}-\frac{1}{4}\)
\(\frac{z^5-z^2}{z^5+y^2+x^2}\ge\frac{3}{4}.\frac{z^4}{x^4+y^4+z^4}-\frac{1}{4}\)
Cộng theo vế ta được:
\(VT\ge\frac{3}{4}.\frac{x^4+y^4+z^4}{x^4+y^4+z^4}-\frac{3}{4}=0\)
Vậy BĐT đc c/m
p/s: bài này mk cx k chắc (nhờ bn ktra nó kêu cứ sai sai nên mk cx k rõ) bạn tham khảo, sai đâu ib cho mk nhé
thân ái!
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
A hay là cách này ấy nhỉ? Cách này thì chắc ăn hơn cách kia.(chỗ chứng minh f(t) >=0 với t>=3)
Cần chứng minh \(f\left(t\right)=2t^2-3t-9\ge0\)
\(\Leftrightarrow2t^2-6t+3t-9\ge0\) (Tách -3t thành -6t + 3t)
\(\Leftrightarrow2t\left(t-3\right)+3\left(t-3\right)=\left(2t+3\right)\left(t-3\right)\ge0\) (luôn đúng với mọi \(t\ge3\))
Do đó f(t) \(\ge0\). Hay ta có đpcm.
Cho \(x\ge3,y\ge2,z\ge1.CMR\)
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\le\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)
Áp dụng BDT Cô-si với 2 số không âm:
\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)
Vậy.......
Cho \(x\ge3,y\ge2,z\ge1\). CMR: \(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+zy\sqrt{x-3}}{xyz}\le\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)
\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\
\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )
\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)
\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Cho x,y,z>0 và xyz=1. Chứng minh rằng:
\(\frac{x}{y^4+2}+\frac{y}{z^4+2}+\frac{z}{x^4+2}\ge1\)
Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)
\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)
Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
à thôi, hình như trong sách của t có bài tương tự rồi ~~~
cho x;y;z >0 và \(x+y+z\ge1\). Chứng minh rằng
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge1\)
Áp dụng bđt AM - GM ta có :
\(\frac{x^3}{y^2}+x\ge2\sqrt{\frac{x^3}{y^2}.x}=\frac{2x^2}{y}\)
\(\frac{y^3}{z^2}+y\ge2\sqrt{\frac{y^3}{z^2}.y}=\frac{2y^2}{z}\)
\(\frac{z^3}{x^2}+z\ge2\sqrt{\frac{z^3}{x^2}.z}=\frac{2z^2}{x}\)
Cộng vế với vế ta được :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\)
Ta lại có : \(\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right)^2\)(bunhiacopxki)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\ge\frac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+x+y+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{x^2}{z}\right)\ge2\left(x+y+z\right)\)
\(\Rightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\ge1\)(đpcm)