Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cai Nguyen Van
Xem chi tiết
Nguyễn Hàn Nhi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 22:28

\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cos2a+sin3a}{2cos3a.cos2a+cos3a}=\dfrac{sin3a\left(2cos2a+1\right)}{cos3a\left(2cos2a+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)

\(\dfrac{1+sin4a-cos4a}{1+sin4a+cos4a}=\dfrac{1+2sin2a.cos2a-\left(1-2sin^22a\right)}{1+2sin2a.cos2a+2cos^22a-1}=\dfrac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\dfrac{sin2a}{cos2a}=tan2a\)

\(96\sqrt{3}sin\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{48}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=48\sqrt{3}sin\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{24}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=24\sqrt{3}sin\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{12}\right)cos\left(\dfrac{\pi}{6}\right)=12\sqrt{3}sin\left(\dfrac{\pi}{6}\right)cos\left(\dfrac{\pi}{6}\right)\)

\(=6\sqrt{3}sin\left(\dfrac{\pi}{3}\right)=6\sqrt{3}.\dfrac{\sqrt{3}}{2}=9\)

\(A+B+C=\pi\Rightarrow A+B=\pi-C\Rightarrow tan\left(A+B\right)=tan\left(\pi-C\right)\)

\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=-tanC\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)

\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)

Phạm Thảo Vân
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 19:04

\(A=\dfrac{cos^2a-sin^2a}{\dfrac{cos^2a}{sin^2a}-\dfrac{sin^2a}{cos^2a}}-cos^2a=\dfrac{cos^2a.sin^2a\left(cos^2a-sin^2a\right)}{\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)}-cos^2a\)

\(=cos^2a.sin^2a-cos^2a=cos^2a\left(sin^2a-1\right)=-cos^4a\)

\(B=\sqrt{\left(1-cos^2a\right)^2+6cos^2a+3cos^4a}+\sqrt{\left(1-sin^2a\right)^2+6sin^2a+3sin^4a}\)

\(=\sqrt{4cos^4a+4cos^2a+1}+\sqrt{4sin^4a+4sin^2a+1}\)

\(=\sqrt{\left(2cos^2a+1\right)^2}+\sqrt{\left(2sin^2a+1\right)^2}\)

\(=2\left(sin^2a+cos^2a\right)+2=4\)

Buddy
Xem chi tiết
Hà Quang Minh
25 tháng 8 2023 lúc 8:46

\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)

\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
11 tháng 5 2017 lúc 8:58

a) \(\dfrac{tan2\alpha}{tan4\alpha-tan2\alpha}=\dfrac{sin2\alpha}{cos2\alpha}:\left(\dfrac{sin4\alpha}{cos4\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\right)\)
\(=\dfrac{sin2\alpha}{cos2\alpha}:\dfrac{sin4\alpha cos2\alpha-sin2\alpha cos4\alpha}{cos4\alpha cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos2\alpha}.\dfrac{cos4\alpha.cos2\alpha}{sin2\alpha}=cos4\alpha\).

Bùi Thị Vân
11 tháng 5 2017 lúc 9:12

b) \(\sqrt{1+sin\alpha}-\sqrt{1-sin\alpha}=\sqrt{sin^2\dfrac{\alpha}{2}+2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)\(-\sqrt{sin^2\dfrac{\alpha}{2}-2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}}\)
\(=\sqrt{\left(sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right)^2}-\sqrt{\left(sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right)^2}\)
\(=\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
\(0< \alpha< \dfrac{\pi}{2}\) nên \(0< \alpha< \dfrac{\pi}{4}\).
Trong \(\left(0;\dfrac{\pi}{4}\right)\) thì \(sin\dfrac{\alpha}{2}\) tăng dần từ 0 tới \(\dfrac{\sqrt{2}}{2}\)\(cos\dfrac{\alpha}{2}\) giảm dần từ 1 tới \(\dfrac{\sqrt{2}}{2}\) nên \(\left|sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right|=-\left(sin\dfrac{\alpha}{4}-cos\dfrac{\alpha}{4}\right)=cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\).
Vì vậy:
\(\left|sin\dfrac{\alpha}{2}+cos\dfrac{\alpha}{2}\right|-\left|sin\dfrac{\alpha}{2}-cos\dfrac{\alpha}{2}\right|\)
\(=sin\dfrac{\alpha}{4}+cos\dfrac{\alpha}{4}-\left(cos\dfrac{\alpha}{4}-sin\dfrac{\alpha}{4}\right)=2sin\dfrac{\alpha}{4}\).

Bùi Thị Vân
11 tháng 5 2017 lúc 9:28

c) \(\dfrac{3-4cos2\alpha+cos4\alpha}{3+4cos2\alpha+cos4\alpha}\)\(=\dfrac{4-4cos2\alpha+cos4\alpha-1}{4+4cos2\alpha+cos4\alpha-1}\)
\(=\dfrac{4\left(1-cos2\alpha\right)-2sin^22\alpha}{4\left(1+cos2\alpha\right)-2sin^22\alpha}\)
\(=\dfrac{4cos^2\alpha-2sin^22\alpha}{4sin^2\alpha-2sin^22\alpha}\)
\(=\dfrac{4cos^2\alpha-8sin^2\alpha cos^2\alpha}{4sin^2\alpha-8sin^2\alpha cos^2\alpha}\)
\(=\dfrac{4cos^2\alpha\left(1-2sin^2\alpha\right)}{4sin^2\alpha\left(1-2cos^2\alpha\right)}=cot^2\alpha.\dfrac{cos2\alpha}{-cot2\alpha}\)
\(=-cot^2\alpha\).

Đặng Viết Tâm
Xem chi tiết
Ngọc anh Nguyễn
Xem chi tiết
Nguyễn Ngọc Bảo Quang
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2021 lúc 23:28

Mẫu số là \(-3cos2a\) hay \(-2cos2a\) vậy bạn? -3 không hợp lý

Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Mạnh Vũ
28 tháng 10 2023 lúc 13:01

Cách 1:

Ta có: \(tan\alpha=\sqrt{2}\Rightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=\sqrt{2}\\1+\left(\sqrt{2}\right)^2=\dfrac{1}{cos^2\alpha}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=\sqrt{2}\cdot cos\alpha\\cos^2\alpha=\dfrac{1}{3}\end{matrix}\right.\)

\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)

    \(=\dfrac{\sqrt{2}\cdot cos\alpha-cos\alpha}{\left(\sqrt{2}\cdot cos\alpha\right)^3+3cos^3\alpha+2\cdot\sqrt{2}\cdot cos\alpha}\)

    \(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{2\sqrt{2}\cdot cos^3\alpha+3cos^3\alpha+2\sqrt{2}\cdot cos\alpha}\)

    \(=\dfrac{cos\alpha\left(\sqrt{2}-1\right)}{cos\alpha\left(2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}\right)}\)

    \(=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot cos^2\alpha+3cos^2\alpha+2\sqrt{2}}\)

Thay \(cos^2\alpha=\dfrac{1}{3}\) vào \(P\) ta có:

\(P=\dfrac{\sqrt{2}-1}{2\sqrt{2}\cdot\dfrac{1}{3}+3\cdot\dfrac{1}{3}+2\sqrt{2}}=\dfrac{\sqrt{2}-1}{1+\dfrac{8}{3}\sqrt{2}}\)

    \(=\dfrac{3\left(\sqrt{2}-1\right)}{3\left(1+\dfrac{8}{3}\sqrt{2}\right)}=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}\)

    \(=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=5\)

Chọn đáp án A.

Nguyễn Mạnh Vũ
28 tháng 10 2023 lúc 13:12

Cách 2:

\(P=\dfrac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}=\dfrac{\left(sin\alpha-cos\alpha\right)\div cos^3\alpha}{\left(sin^3\alpha+3cos^3\alpha+2sin\alpha\right)\div cos^3\alpha}\)

    \(=\dfrac{\dfrac{sin\alpha}{cos^3\alpha}-\dfrac{1}{cos^2\alpha}}{\dfrac{sin^3\alpha}{cos^3\alpha}+3+2\cdot\dfrac{sin\alpha}{cos^3\alpha}}=\dfrac{\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}-\dfrac{1}{cos^2\alpha}}{tan^3\alpha+3+2\cdot\dfrac{sin\alpha}{cos\alpha}\cdot\dfrac{1}{cos^2\alpha}}\)

    \(=\dfrac{tan\alpha\cdot\left(1+tan^2\alpha\right)-\left(1+tan^2\alpha\right)}{tan^3\alpha+3+2tan\alpha\cdot\left(1+tan^2\alpha\right)}\)

Thay \(tan\alpha=\sqrt{2}\) vào ta có:

\(P=\dfrac{\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]-\left[1+\left(\sqrt{2}\right)^2\right]}{\left(\sqrt{2}\right)^3+3+2\sqrt{2}\cdot\left[1+\left(\sqrt{2}\right)^2\right]}=\dfrac{3\sqrt{2}-3}{2\sqrt{2}+3+6\sqrt{2}}\)

    \(=\dfrac{3\left(\sqrt{2}-1\right)}{3+8\sqrt{2}}=\dfrac{3\left(\sqrt{2}-1\right)}{3+2^3\sqrt{2}}=\dfrac{a\left(\sqrt{b}-1\right)}{a+b^3\sqrt{b}}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\Rightarrow a+b=3+2=5\)

Chọn đáp án A