\(lim=\frac{\sqrt{n+\sqrt{n+1}}}{\sqrt{n-\sqrt{n}}}\)
Tính 1) \(lim\frac{\sqrt{n}-2}{n+\sqrt{n}+1}\)
2) \(lim\frac{\sqrt[3]{n^3+n}+2}{n+2}\)
3)\(lim\frac{\sqrt[3]{n^3+1}-1}{\sqrt{n^2+3}-2}\)
\(lim\sqrt[3]{n^2+n^3}+n.\) B))lim\(\frac{n^2+2\sqrt{n}+3}{2n^2+n-\sqrt{n}}\)
C))\(\frac{2n\sqrt{n}+3}{n^2+n+1}\) Đ)) lim \(\frac{\left(3+\sqrt{n}\right)\left(2n\sqrt{n}\right)}{\left(n+1\right)\left(n+2\right)}\)
\(a=\lim\limits n\left(\sqrt[3]{\frac{1}{n}+1}+1\right)=+\infty.2=+\infty\)
\(b=\lim\limits\frac{n^2+2\sqrt{n}+3}{2n^2+n-\sqrt{n}}=\lim\limits\frac{1+\frac{2}{n\sqrt{n}}+\frac{3}{n^2}}{2+\frac{1}{n}-\frac{1}{n\sqrt{n}}}=\frac{1}{2}\)
\(c=\lim\limits\frac{2n\sqrt{n}+3}{n^2+n+1}=\frac{\frac{2}{\sqrt{n}}+\frac{3}{n^2}}{1+\frac{1}{n}+\frac{1}{n^2}}=\frac{0}{1}=0\)
\(d=\lim\limits\frac{2n^2+6n\sqrt{n}}{n^2+3n+2}=\lim\limits\frac{2+\frac{6}{\sqrt{n}}}{1+\frac{3}{n}+\frac{2}{n^2}}=\frac{2}{1}=2\)
\(lim\left(\sqrt[3]{n-n^3}+\sqrt{n^2+3n}\right)\)
\(lim\left(\sqrt{n-2\sqrt{n}}-\sqrt{n+4}\right)\)
\(lim\left(\sqrt[3]{3n^2+n^3}-n\right)\)
\(lim\left(\sqrt[3]{n^3+6n}-\sqrt{n^2-4n}\right)\)
\(lim\frac{-3^{n+1}+4^{n+1}}{5.3^n+3.2^{2n-1}}\)
\(lim\left(\frac{3^{2n}-5^{n+1}+7^{n+1}}{3^{n+2}+5^n+2^{3n+2}}\right)\)
\(lim\left(\frac{6^{n+1}+3^{2n+5}}{3^{2n+3}-2^{2n-1}}\right)\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)
9/ lim\(\left(7-3.3^n-2.7^n\right)\)
10/lim\(\frac{\sqrt{3n^2+1}-\sqrt{n^2-2}}{n+4}\)
11/ lim\(\frac{n^2+\sqrt[3]{1-n^6}}{\sqrt{n^4+1}-n^2}\)
12/ lim\(\frac{2.4^n+3.6^n}{7.6^n+7^n}\)
a, lim \(\dfrac{\sqrt{n+1}}{1+\sqrt{n}}\)
b, lim \(\dfrac{1+2+...+n}{n^2+2}\)
c, lim \((\sqrt{n^2+n+1}-n)\)
d, lim \((\sqrt{3n-1}-\sqrt{2n-1})\)
e, lim \((\sqrt[3]{n^3+2n^2}-n)\)
g, lim \(\dfrac{(2)^{n}+(3)^{n+2}}{4×(3)^{n}+(2)^{n+3}}\)
a/ \(=\lim\limits\dfrac{\sqrt{\dfrac{n}{n}+\dfrac{1}{n}}}{\dfrac{1}{\sqrt{n}}+\sqrt{\dfrac{n}{n}}}=1\)
b/ \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)
\(\Rightarrow\lim\limits\dfrac{n\left(n+1\right)}{2n^2+4}=\lim\limits\dfrac{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}}{\dfrac{2n^2}{n^2}+\dfrac{4}{n^2}}=\dfrac{1}{2}\)
c/ \(=\lim\limits\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{n+1}{\sqrt{n^2+n+1}+n}=\lim\limits\dfrac{\dfrac{n}{n}+\dfrac{1}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{n}{n^2}+\dfrac{1}{n^2}}+\dfrac{n}{n}}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
d/ \(=\lim\limits\left[\sqrt{n}\left(\sqrt{3-\dfrac{1}{\sqrt{n}}}-\sqrt{2-\dfrac{1}{\sqrt{n}}}\right)\right]=\lim\limits\left[\sqrt{n}\left(\sqrt{3}-\sqrt{2}\right)\right]=+\infty\)
e/ \(=\lim\limits\dfrac{n^3+2n^2-n-n^3}{\left(\sqrt[3]{n^3+2n^2}\right)^2+n.\sqrt[3]{n^3+2n^2}+n^2}=\lim\limits\dfrac{2n^2-n}{\left(n^3+2n^2\right)^{\dfrac{2}{3}}+n.\left(n^3+2n^2\right)^{\dfrac{1}{3}}+n^2}\)
\(=\dfrac{2}{1+1+1}=\dfrac{2}{3}\)
g/ \(=\lim\limits\dfrac{2^n+9.3^n}{4.3^n+8.2^n}=\lim\limits\dfrac{\left(\dfrac{2}{3}\right)^n+9.\left(\dfrac{3}{3}\right)^n}{4.\left(\dfrac{3}{3}\right)^n+8.\left(\dfrac{2}{3}\right)^n}=\dfrac{9}{4}\)
a) lim \(\frac{n\sqrt{n}-3n-2}{n^2-3n+2}\)
b) lim \(\frac{\sqrt{n}+1}{\sqrt{n}-2}\)
Giúp em với ạ
a) lim n (\(\sqrt{n^2+2}-n\))
b) lim \(\sqrt{n^2+2n}-n-1\)
c) lim \(\frac{1}{\sqrt{n^2+3n}-n}\)
d) lim \(\sqrt[3]{n^3+2}-n\)
e) lim \(\sqrt[3]{n^3+1}-\sqrt{n^2+n}\)
12/ lim\(\frac{3^n+5^{n+2}}{2.4^n+5^n}\)
13/ lim\(\left(\sqrt{n^4+3n+1}-n^2-1\right)\)
14/ lim\(\left(\sqrt[3]{n^2-n^3}+n\right)\)
15/ lim\(\frac{n^2+\sqrt[3]{1-n^6}}{\sqrt{n^4+1}-n^2}\)
\(\lim\limits\frac{\sqrt{n}+\sqrt[3]{n}+\sqrt[4]{n}}{\sqrt{2n+1}}\)
\(=\lim\limits\frac{1+\sqrt[6]{\frac{1}{n}}+\sqrt[4]{\frac{1}{n}}}{\sqrt{2+\frac{1}{n}}}=\frac{1+0+0}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)