\(\orbr{\begin{cases}\\4\frac{1}{2}:2,5-40\%+\left(-\frac{1}{5}\right)\end{cases}}.\frac{5}{9}\)
\(\left(0,125+40\%-\frac{3}{40}\right)\):\(\orbr{\begin{cases}\\\end{cases}11\frac{3}{7}+8\frac{1}{2}-\left(\frac{13}{12}-5\frac{4}{7}\right)}\)
\(\orbr{\begin{cases}\\\end{cases}}6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\orbr{\begin{cases}\\\end{cases}\frac{3}{2}}\)
Tính hợp lí :\(\orbr{\begin{cases}\\\end{cases}9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right):\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)}\)
\(\left[9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
có 9 số 1 có 9 số hạng
\(=\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{10}\right)\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=\left[\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right]\div\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)\)
\(=1\)
g) \(|9-7x|=5x-3\)
Vì \(|9-7x|\ge0;\forall x\)
\(\Rightarrow5x-3\ge0\)
\(\Rightarrow x\ge\frac{3}{5}\)
Ta có: \(|9-7x|=5x-3\)
\(\Leftrightarrow\orbr{\begin{cases}9-7x=5x-3\\9-7x=3-5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-7x-5x=-3-9\\-7x+5x=3-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-12x=-12\\-2x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1>\frac{3}{5}\left(chon\right)\\x=3>\frac{3}{5}\left(chon\right)\end{cases}}\)
Vậy \(x\in\left\{1;3\right\}\)
h) \(8x-|4x+1|=x+2\)
\(\Leftrightarrow|4x+1|=7x+2\)
Vì \(|4x+1|\ge0;\forall x\)
\(\Rightarrow7x+2\ge0\)
\(\Rightarrow x\ge\frac{-2}{7}\)
Ta có: \(|4x+1|=7x+2\)
\(\Leftrightarrow\orbr{\begin{cases}4x+1=7x+2\\4x+1=-7x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=1\\11x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}< \frac{-2}{7}\left(loai\right)\\x=\frac{-3}{11}>\frac{-2}{7}\left(chon\right)\end{cases}}\)
Vậy \(x=\frac{-3}{11}\)
mk là KHÁNH LINH.
Tính tổng :
\(S_n=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2_n+1}{\orbr{\begin{cases}\\n\left(n+1\right)^2\end{cases}}}\)
\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+..+\frac{1}{n^2}-\frac{1}{n+1^2}\)
\(\Rightarrow S=1-\frac{1}{n+1}\)
\(\Rightarrow S+\frac{n}{n+1}\)
\(\hept{\begin{cases}\\\end{cases}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}_{ }_{ }_{ }^2^2^{ }\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\frac{ }{ }\frac{ }{ }\frac{ }{ }\frac{ }{ }\sqrt[]{}\sqrt{ }}\)
Thế thì đừng hỏi trong khi câu mình ko biết mà người khác cũng ko biết đi cho đỡ phức tạp nhe bạn nhen
P/s : Mọi người đừng để ý ạ !
\(\left|4-x\right|+2x=3\)
\(\Leftrightarrow\orbr{\begin{cases}4-x+2x=3\\x-4+2x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
Vậy \(x\in\left\{-1;\frac{7}{3}\right\}\)
giúp mình với ạ , mình đang cần gấp !!!
a,\(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\)
b, \(\hept{\begin{cases}x+\frac{1}{y}=\frac{-1}{2}\\2x-\frac{3}{y}=\frac{-7}{2}\end{cases}}\)
c,\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
b) ĐK : y khác 0
\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)
c) ĐK : x khác -1 ; y khác 2
\(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}+\frac{2}{y-2}=5\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\). Đặt \(\hept{\begin{cases}\frac{1}{x+1}=a\\\frac{1}{y-2}=b\end{cases}\left(a,b\ne0\right)}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=6\\5a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a+2b=5\\10a-2b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}11a=11\\a+2b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}}\Rightarrow\hept{\begin{cases}x+1=1\\y-2=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}\left(tm\right)}\)
giải hệ phương trình:
1) \(\hept{\begin{cases}2\left(x+y\right)+3\left(x+y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{cases}}\)
2)\(\hept{\begin{cases}\left(2x-3\right)\left(2y+4\right)=4x\left(y-3\right)+54\\\left(x+1\right)\left(3y-3\right)=3y\left(x+1\right)-12_{ }\end{cases}}\)
3) \(\hept{\begin{cases}\frac{2y-5x}{3}+5=\frac{y+27}{4}-2x\\\frac{x+1}{3}+y=\frac{6y-5x}{7}\end{cases}}\)
4)\(\hept{\begin{cases}\frac{1}{2}\left(x+2\right)\left(y+3\right)-\frac{1}{2}xy=50\\\frac{1}{2}xy-\frac{1}{2}\left(x-2\right)\left(y-2\right)=32\end{cases}}\)
5)\(\hept{\begin{cases}\left(x+20\right)\left(y-1\right)=xy\\\left(x-10\right)\left(y+1\right)=xy\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
2) Từ hệ ta có \(\hept{\begin{cases}20x-6y=66\\-3x=-9\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)