Cho a,b,c là các số tự nhiên lẻ. Chứng minh rằng :
(a,b) = (a+b/2,b+c/2,a+c/2)
1.cho a,b,c là các số dương lớn hơn 1.Chứng minh a^2/(b-1)+b^2/(c-1)+c^2/(a-1)>=12
2.Cho các số tự nhiên a,b,c,d. Chứng minh rằng M=a/(a+b+c)+b/(b+c+d)+c/(c+d+a)+d/(d+a+b) không là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
cho a,b là 2 số tự nhiên liên tiếp,c=a*b
chứng minh rằng p=a2+b2+c2là sood chính phương lẻ
a, b là 2 số tự nhiên liên tiếp nên b=a+1. Thay vào p ta có:
p = a2+(a+1)2+a2*(a+1)2
p= a2+a2+2a+1+a2(a2+2a+1)
p=a4+ 2a3+3a2+2a+1
p=(a4+2a3+a) +2 (a2+a) +1
p=(a2+a)2+2 (a2+a) +1
p=[(a2+a) + 1]2
Vậy p là số chính phương.
Nếu a lẻ thì (a2+a) chẵn => p lẻ
Nếu a chẵn thì (a2+a) chẵn => p lẻ
Vậy p là số chính phương lẻ.
Cho \(a,b,c\) là các số tự nhiên khác \(0\), \(a\ne c\) sao cho \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\). Chứng minh rằng \(a^2+b^2+c^2\) không phải là số nguyên tố.
Cho A= a2+b2+c2, trong đó a và b là hai số tự nhiên liên tiếp, c=ab. Chứng minh rằng căn A là một số tự nhiên lẻ.
Giải hay và chi tiết cho mình nhé. Mình tích cho các thiên tài thật nhiều nhé, cảm ơn!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a)Chứng minh rằng \(A=\left(n+1^4\right)+n^4+1\)chia hết cho một số chính phương khác 1 với n nguyên dương.
b) Cho \(A=a^2+b^2+c^2\), trong đó a và b là 2 số tự nhiên liên tiếp và c=ab. Chứng minh rằng \(\sqrt{A}\)là 1 số tự nhiên lẻ.
b, vì a và b là 2 stn liên tiếp nên a=b+1 hoặc b=a+1
cho b=a+1
\(A=a^2+b^2+c^2=a^2+b^2+a^2b^2=a^2+\left(a+1\right)^2+a^2\left(a+1\right)^2\)
\(=a^2+\left(a+1\right)^2\left(a^2+1\right)=a^2+\left(a^2+2a+1\right)\left(a^2+1\right)\)
\(=a^2+2a\left(a^2+1\right)+\left(a^2+1\right)^2=\left(a^2+a+1\right)^2\)
\(\Rightarrow\sqrt{A}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1=a\left(a+1\right)+1=ab+1\)
vì a b là 2 stn liên tiếp nên sẽ có 1 số chẵn\(\Rightarrow ab\)chẵn \(\Rightarrow ab+1\)lẻ \(\Rightarrow\sqrt{A}\)lẻ (đpcm)
Làm cả câu a đi nhé! Nếu bạn làm được cả câu a thì mình k! ^_^ *_*
Sửa đề : \(A=\left(n^2+1\right)+n^4+1\)
\(\Rightarrow A=\left(n^2\right)^2+2n^2+1+n^2-2n^2+1\)
\(\Rightarrow\left(n^2+1\right)^2+\left(n^2-1\right)^2\)
Vậy ...........................
Chứng minh rằng M= 4a(a+b)(a+b+c)(a+c) + b^2.c^2 là số chính phương với a,b,c là các số tự nhiên
\(M=4a\left(a+b\right)\left(a+b+c\right)\left(a+c\right)+b^2c^2=4\left[a\left(a+b+c\right)\right]\left[\left(a+b\right)\left(a+c\right)\right]+b^2c^2\)
\(=4\left(a^2+ab+ac\right)\left(a^2+ab+ac+bc\right)+b^2c^2\)
\(=4\left(a^2+ab+ac\right)^2+4bc\left(a^2+ab+ac\right)+b^2c^2\)
\(=\left[2\left(a^2+ab+ac\right)+bc\right]^2\)là số chính phương
Cho a, b, c là các số tự nhiên khác 0. Chứng minh rằng:1< a/a+b + b/b+c + c/c+a <2
\(\frac{a}{c+b}>\frac{a}{a+b+c},\frac{b}{a+c}>\frac{b}{a+b+c},\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a+b+c}{a+b+c}=1\)
Lại có : \(\frac{a}{c+b}< \frac{2a}{a+b+c},\frac{b}{a+c}< \frac{2b}{a+b+c},\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)
=> đpcm
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)và\(\frac{b}{b+c}>\frac{b}{b+c+a}\)và \(\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 1\)
Vì \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(c>0\right)\)
Chứng minh tương tự \(\frac{b}{b+c}< \frac{b+a}{b+c+a}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Vậy \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Mình chưa hiểu chỗ a/a+b<a+c/a+b+c . Bạn giải thích cho mình đi
cho các số tự nhiên a,b,c khác 0,sao cho a^b +c,b^c+a,c^a+b đều là các số nguyên tố. Chứng minh rằng 2 trong các số đã cho phải bằng nhau
BÀI 1: CHỨNG MINH RẰNG 4 SỐ TỰ NHIÊN BẤT KỲ BAO GIỜ CŨNG CÓ HIỆU HAI SỐ CHIA HẾT CHO 3
BÀI 2: CHO 3 SỐ TỰ NHIÊN a,b và c.Trong đó a và b chia cho 5 dư 3 còn c chia cho 5 dư 2
a CHỨNG MINH RẰNG MỖI TỔNG HOẶC HIỆU a+b+c hoặc a+c-b;a-b chia hết cho 5
b Mỗi tổng hoặc hiệu a+b+c; a+b-c ; a+c-b có chia hết cho 5 không
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha
trân thành cảm ơn