cho tam giác ABC nhọn , hai đường cao BE , CF cắt nhau tại H chứng minh AE.AC=AB.AF ; chứng minh tam giác AEF đồng dạng tam giác ABC
Qua B kẻ đường thẳng song song CF cắt AH tại M , AH cắt BC tại D chứng minh BD2 =AD.DM
cho tam giác ABC, các góc B và C đều là góc nhọn. hai đường cao BE và CF cắt nhau tại H. chứng minh rằng:
a) AB.AF = AC.AE
b) ΔAEF~ ΔAB
a: Xét ΔABE vuông tạiE và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔABE\(\sim\)ΔACF
SUy ra: AE/AF=AB/AC
=>AE/AB=AF/AC và \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF\(\sim\)ΔABC
a ).
t/g ABE đồng dạng t/g ACF ( g/g )
=> \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay AB . AF = AC . AE
b) .
\(\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét t/g AEF và t/g ABC có:
góc A chung
và \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
suy ra : t/g AEF đồng dạng tg ABC
Cho △ABC nhọn. Hai đường cao BE và CF cắt nhau tại H Chứng minh:a) AB.AF=AE.AC b) △AFE∼△ABC c, biết góc BHC=120°, diện tích ∆AEF=40cm^2. Tính diện tích ∆ABC
a.-△AEB∼△AFC (g-g) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AE.AC\)
b. \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
\(\Rightarrow\)△AFE∼△ACB (c-g-c)
c. \(\widehat{FAE}+\widehat{AFH}+\widehat{AEH}+\widehat{FHE}=360^0\Rightarrow\widehat{FAE}+90^0+90^0+120^0=360^0\Rightarrow\widehat{FAE}=60^0\)
-D là trung điểm AC \(\Rightarrow FD=AD=\dfrac{AC}{2}\) \(\Rightarrow\)△AFD cân tại D mà \(\widehat{FAD}=60^0\)\(\Rightarrow\)△AFD đều.
\(\Rightarrow AF=AE=\dfrac{AC}{2}\)
\(\dfrac{S_{AFE}}{S_{ACB}}=\left(\dfrac{AF}{AC}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ACB}=4.S_{AFE}=4.40=160\left(cm^2\right)\)
Cho tam giác nhọn ABC, kẻ đường cao BE và CF cắt nhau tại H .
a/ Chứng minh:
b/ Chứng minh :AB.AF = AE . AC
c/ Chứng minh : AHBC.
d/ Chứng minh . BH.BE+CH.CF=BC2
b: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng vớiΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
c: XétΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Cho tam giác ABC kẻ đường cao AH,kẻ đường thẳng BE và CF cắt nhau tại H. a.Chứng mình: AE.AC=AB.AF b.∆AEF~∆ABC C.Qua B kẻ đường thẳng song song với CF cắt AH tại M. AH cắt BC tại D.Chứng minh: BD^2=AD.DM
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
b: XétΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
Cho tam giác ABC kẻ đường cao AH,kẻ đường thẳng BE và CF cắt nhau tại H. a.Chứng mình: AE.AC=AB.AF b.∆AEF~∆ABC C.Qua B kẻ đường thẳng song song với CF cắt AH tại M. AH cắt BC tại D.Chứng minh: BD^2=AD.DM
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE và AB/AE=AC/AF
b: Xét ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
Cho △ABC nhọn. Hai đường cao BE và CF cắt nhau tại H
Chứng minh:a) AB.AF=AE.AC
b) △AFE∼△ABC
c) BH.BE+CH.CF= BC2
cho tam giác ABC nhọn các đường cao AD,BE,CF cắt nhau tại H . hãy chứng minh
1) AE.AC=AF.AB
2) tam giác AFE đồng dạng tam giác ACB
giúp mik nha mn
1: Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồg dạng vớiΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF; AE/Ab=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
bạn tự cẽ hình nha
1. xét △FCA và △EBA có
góc A chung
góc CFA = góc BEA = 90 độ
=> △FCA ∼ △EBA (g.g)
vì △FCA ∼ △EBA
=> FC/EB = CA/BA = FA/EA = FA/CA = EA/BA
2. xét △AFE và △ACB có
góc A chung
FA/CA = EA/BA (cmt)
=> △AFE ∼ △ACB ( c.g.c)
Cho tam giác ABC nhọn (AB < AC), 3 đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác ABE đồng dạng ACF từ đó suy ra AB.AF=AC.AE
b) Chứng minh: AFE = ACB
c) Đường thẳng EF cắt AD và tia CB lần lượt tại I và K. Chứng minh: KF. IE = KE . IF
Mong các bạn giúp mình :D
a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).
b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)
c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (1).
Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\) (2).
Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)
Cho tam giác ABC nhọn có 3 góc nhọn , các đường cao AD ; BE ; CF cắt nhau tại H . Chứng minh :
a. AE.AC = AF.AB
b.tam giác AEF đd tam giác ABC ; tam giác DBF đd tam giác DEC
c. tam giác HEF đd tam giác HBC
d.chứng minh:BF.BA+CE.CA=BC^2
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
d) Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{FBD}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA(g-g)
Suy ra: \(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BF\cdot BA=BD\cdot BC\)
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
\(\widehat{BCE}\) chung
Do đó: ΔBEC\(\sim\)ΔADC(g-g)
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CA=CB\cdot CD\)
Ta có: \(BF\cdot BA+CE\cdot CA\)
\(=BC\cdot BD+BC\cdot CD\)
\(=BC\left(BD+CD\right)\)
\(=BC\cdot BC=BC^2\)(Đpcm)