Tìm GTLN của A = \(\sqrt{6-x}+\sqrt{x-4}\)
Tìm GTNN , GTLN của biểu thức :
A=\(\sqrt{x+4}+\sqrt{6-x}\)
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
Tìm GTLN và GTNN của biểu thức có dạng:
a) A= \(\sqrt{x-1}+\sqrt{4-x}\)
b) B= \(\sqrt{x+1}+\sqrt{6-x}\)
Mọi người giải giúp em nhé
Tính hợp lí
(2018/2017-2019/2018+2020/2019)×(1/2-
1/3-1/6)×(1/2+1/3+1/4+...+1/2020)
Em cảm ơn
Tìm Max trước thôi nhé, Min nghĩ sau:V
a) đk: \(1\le x\le4\)
Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)
=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)
=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)
Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2
b) đk: \(-1\le x\le6\)
Tương tự sử dụng BĐT Bunhiacopxki:
\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)
Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)
Min:
Áp dụng BĐT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\) . Dấu "=" xảy ra khi \(AB=0\):
\(A=\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(4-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
\(B=\sqrt{x+1}+\sqrt{6-x}\ge\sqrt{x+1+6-x}=\sqrt{7}\)
Dấu "=" xảy ra khi \(\left(x+1\right)\left(6-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
1) giải phương trình
a)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}=1}\)
b)\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
2) Tìm GTLN của biểu thúc
M=\(\sqrt{x-2}+\sqrt{4-x}\)
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Cho hai số x,y thỏa mãn x^+y^2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\). Tìm GTLN của Bt P=xy
x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
A=\(\frac{10\sqrt{x}}{x+3\sqrt{x}-4}-\frac{2\sqrt{x}-3}{\sqrt{x}+4}-\frac{\sqrt{x+1}}{\sqrt{x}-1}\)
a)cm A>-3
b) tìm GTLN của A
Xin lỗi online math em lỡ spam rồi đừng trừ diem a
Cho A=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-x}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tìm GTLN của A