Cho a,b,c,d E N* thoả mãn a/b < c/d. Chứng minh rằng:2018a+c/2018b+d < c/d
cho a,b,c,d thuộc N* thoả mãn a/b<c/d .Chứng minh rằng 2018a+c/2018b+d<c/a
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d
2018a+c/2018b+d<c/d
Vì a/b<c/d=>a.d<c.b
<=>2018a.d<2018b.c
<=>2018a.d+cd<2018b.c+cd
<=>d(2018a+c)<c(2018b+d)
<=>điều phải chứng minh
Cho a; b; c; d ∈ N* thỏa mãn \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng: 2018a+c / 2018b+d < \(\dfrac{c}{d}\)
Cho a;b;c;d \(\in\)N* thỏa mãn điều kiện \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Hình như là
a/b=2018a/2018b
Vì a/b<c/d
=>2018a/2018b<c/d
=>2018a+c/2018b+d<c+d
Cho a,b,c,d thuộc N* thỏa mãn a/b < c/d . Chứng minh 2018a+c/2018b+d < c/d
( / ) là phần nhé
Câu hỏi của Thi Bùi - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
cho a;b;c thuộc N* thỏa mãn a/b < c/d. CMR 2018a+c/2018b+d < c/d
Vì a/b<c/d nên a.d<c.b
=>2018.a.d<2018.c.b
=>2018.a.d+c.d<2018.c.b+c.d
=>2018a+c/2018b+d<c/d
Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.
Vì a/b<c/d nên a.d<c.b
=>2018.a.d<2018.c.b
=>2018.a.d+c.d<2018.c.b+c.d
=>2018a+c/2018b+d<c/d
Vậy ta đã chứng minh 2018a+c/2018b+d<c/d.
Vì a/b<c/d nên a.d<c.b
. =>2018.a.d<2018.c.b.
=>2018.a.d+c.d<2018.c.b+c.d.
=>2018a+c/2018b+d<c/d.
Vậy ta đã chứng minh được 2018a+c\2018b+d<c\d
tìm a;b;c;d thuộc n* thỏa mãn a/b<c/d.Chứng minh rằng 2018a cộng c/2018b cộng d <c/d
Cho a b c d €N* thoa mann a/b <c/d.chung minh rang 2018a+c/2018b+d<c/d