tính
B=\(50:\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{2449}{49.50}\right)\)
tìm x, biết
a) |x+1|+|x+2|+|x+3|+...+|x+99|=100x
b) \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{49.50}\right|=50.x\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)
\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)
\(\Rightarrow99x+1+2+3+...+99=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow-x=-4950\)
\(\Rightarrow x=4950\)
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)
\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)
\(\Rightarrow50x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)
\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
tu lam
\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)
\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow x=4950\)(t/m đk x > = 0)
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)
\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)
Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)
\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)
\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))
a)A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)
b)B=\(\frac{1}{3}+\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{100}< \frac{1}{2}\)
c)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
d)A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}.CMR\frac{7}{12}< A< \frac{5}{6}\)
AI ĐÚNG MINK \(\left(TICK\right)\)CHO (làm đc trên 2 câu)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)
\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)
\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)
\(\Rightarrow2B< 1\)
\(\Rightarrow B< \frac{1}{2}\)
c)\(C=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Tìm x: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)
Xét vế trái ta có:
\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)
\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)
\(=10.\left(1-\frac{1}{50}\right)+2x\)
\(=10.\frac{49}{50}+2x\)
\(=\frac{49}{5}+2x\) (2)
Xét vế phải ta có:
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)
\(=2.\left(1-\frac{1}{49}\right)-7x\)
\(=2.\frac{48}{49}-7x\)
\(=\frac{96}{49}-7x\) (3)
Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)
\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)
\(\Rightarrow9x=-\frac{1921}{245}\)
\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
Chúc bạn học tốt!
Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)
\(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)
\(\frac{49}{5}+2x=\frac{96}{49}-7x\)
\(7x+2x=\frac{96}{49}-\frac{49}{5}\)
\(9x=-\frac{1921}{245}\)
\(x=-\frac{1921}{245}:9\)
\(x=-\frac{1921}{2205}\)
Vậy \(x=-\frac{1921}{2205}\)
Tìm x: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)
\(\Leftrightarrow2x+10\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)-7x\)
\(\Leftrightarrow2x+10\cdot\dfrac{49}{50}=2\left(1-\dfrac{1}{49}\right)-7x\)
\(\Leftrightarrow9x=-\dfrac{1921}{245}\)
hay x=-1921/2205
\(y=\frac{\left(-1-2-3-.......-50\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12\right)-21.3,6}{\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}}\)
so sánh \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}và\)\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Tổng cộng sẽ mất: 10 phút (D) + 1 phút (A quay lại) + 7 phút (A+C) + 1 phút (A quay lại) + 2 (A+B) = 21 phút
Để giảm thời gian, chúng ta nên tìm cách cho D và C đi với nhau. Nếu họ đi qua cầu đầu tiên, họ sẽ cần một người quay lại đón người khác.
Như thế thì quá mất thời gian. Thử để A đi cùng B và để A đợi ở phía kia cây cầu. Sau khi B quay lại, C và D sẽ qua cầu và đưa đuốc cho A đón B sang.
A và B qua cầu => 2 phút
B quay lại => 2 phút
C và D qua cầu => 10 phút
A quay lại => 1 phút
A và B qua cầu => 2 phút
Tổng là: 2 + 2 + 10 + 1 + 2 = 17 phút
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
b. \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{196}<2\)
tính tích\(\left(\frac{3}{429}-\frac{1}{1.3}\right).\left(\frac{3}{429}+\frac{1}{3.5}\right).........\left(\frac{3}{429}-\frac{1}{119.121}\right)+\left(\frac{3}{429}-\frac{1}{121.123}\right)\)
a) Tính A=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+..........+\frac{10}{1400}\)
b) Tìm x thuộc Z , biết \(\frac{1.2+2.3+3.4+....+99.100}{x^2+\left(x^2+1\right)+\left(x^2+2\right)+.....+\left(x^2+99\right)}=50\frac{116}{131}\)
Tính tổng: A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
= 1-\(\frac{1}{50}\)
= \(\frac{49}{50}\)
ta có công thức tính tổng quát 1/[n(n+1)] = 1/n -1/(n+1)
=> A=1/1.2+ 1/2.3+1/3.4+1/4.5+...+1/49.50
=1/1 -1/2 +1/2 -1/3 +1/3-1/4+.......+1/49 -1/50
= 1 -1/50 = 49/50
Ai thấy đúng thì tk cho mk nhé
= \(\frac{49}{50}\).
Đúng 100% luôn!
Chúc các bạn học giỏi.