S=1+1/2+1/3+...+1/32
So sánh S với 3
\(S=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) so sánh S với \(\dfrac{1}{2}\)
\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
=>2S=1-1/3^100
=>S=1/2-1/2*3^100<1/2
S=1+1/2+1/3+...+1/32
So sánh S với 3
Cho S=1/2^2+1/3^2+....+1/100^2 .So sánh S với 3/4
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
ta có
1/3^2 < 1/2*3 ; 1/4^2 < 1/3*4 ; .........; 1/100^2< 1/99*100
suy ra s=1/2^2+1/3^2+....+1/100^2 < 1/2*3 + 1/3*4 +...........+ 1/99*100
S < 1/4 + 1/2 - 1/3 + 1/3 +..........+ 1/99 - 1/100
suy ra S< 1/4 +1/2 - 1/100
hay S < 3/4 -1/100
mà 3/4 -1/100< 3/4
suy ra s<3/4
s=1-3+3^2-3^3+...+100/3^100 hãy so sánh s với 1/5
\(3s=3-3^2+3^3-3^4+...+3^{100}\)
\(4s=\left(3-3^2+3^3-3^4+...+3^{101}\right)+\left(1-3+3^2-3^3+...+3^{100}\right)\)
\(4s=1\)
\(s=\dfrac{1}{4}>\dfrac{1}{5}\)
S=1/3+2/3^2+3/3^3+4/3^4+..................+100/3^100. So sánh S với 1/5
Cho S = 1/30 + 1/31 + 1/32 + 1/33 + ... + 1/49 . So sánh S với 2/3
So sánh S với 2
S=1+1/3+1/6+1/10+...+1/45
\(S=1+\frac{1}{3}+...+\frac{1}{45}\)
\(\frac{S}{2}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{S}{2}=1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow S=\frac{9.2}{10}=1.8<2\)
\(\Rightarrow S<2\)
Chúc bạn học tốt nha !!!
a) S=1+1/3+1/6+1/10+...+1/45. So sánh S với 2
S =1+3+3^2+3^3+...+3^20
SÓA SÁNH S VỚI 1/2 .3^21
\(S=1+3+3^1+3^2+3^3+.....+3^{20}\)
\(3S=3.\left(1+3+3^1+3^2+3^3+.....+3^{20}\right)\)
\(3S=3.1+3.3^1+3.3^2+3.3^3+.....+3.3^{20}\)
\(3S=3+3^2+3^3+3^4+...+3^{21}\)
\(2S=3S-S\)
\(2S=\left(3+3^2+3^3+3^4+.....+3^{21}\right)-\left(1+3^1+3^2+3^3+.....+3^{20}\right)\)
\(2S=3^{21}-1\)
\(\Rightarrow S=\frac{3^{21}-1}{2}\)
\(\frac{1}{2}.3^{21}=3^{21}\div2\)
Vì \(\frac{3^{21}-1}{2}< 3^{21}\div2\)nên S < \(\frac{1}{2}.3^{21}\)