\(_{\left|3x-5\right|=2009\left(2010^{2009}+2010^{2008}+...+2010+1\right)-2010^{2010}+5}\)
\(\left|3x-5\right|=2009\left(2010^{2009}+2010^{2008}+...+2010+1\right)-2010^{2010}+5\)
|3x-5|=2009(2010^2009+2010^2008+....+2010+1)-2010^2010=5
So sánh các giá trị \(A=\left(19^{2009}+5^{2009}\right)^{2010}\&B=\left(19^{2010}+5^{2010}\right)^{2009}.\)
So sánh giá trị của \(A=\left(19^{2009}+5^{2009}\right)^{2010}\&B=\left(19^{2010}+5^{2010}\right)^{2009}.\)
\(A>B\),có lẽ là bởi vì \(A\)có mũ 2010 ;còn \(B\)thì lại có mũ 2009.
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)
tìm x :
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{49}{19}\)
tìm x biết \(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)
đặt 2009-x=a,x-2010=b
suy ra a^2+ab+b^2/a^2-ab+b^2=19/49
suy ra 49(a^2+ab+b^2)=19(a^2-ab+b^2)
49a^2+49ab+49b^2=19a^2-19ab+19b^2
30a^2+68ab+30b^2=0
30a^2+50ab+18ab+30b^2=0
10a(3a+5b)+6b(3a+5b)=0
(3a+5b)(10a+6b)=0
suy ra 3a+5b=0 hoặc 10a+6b=0
thế vào lại rồi tìm x
Giải phương trình:
\(\left(x-2008\right)^{2010}+\left(x-2009\right)^{2010}=1\)
Tìm x biết:
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)