Tính số đo x:
AC=3cm,\(\widehat{B_1}=\widehat{B_2}\)
Cho Hình 16, biết a // b.
a) Chỉ ra góc ở vị trí so le trong, đồng vị với góc \(\widehat {{B_2}}\)
b) Tính số đo các góc \(\widehat {{A_4}},\widehat {{A_2}},\widehat {{B_3}}\)
c) Tính số đo các góc \(\widehat {{B_1}},\widehat {{A_1}}\).
a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)
Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)
b) Vì a // b nên:
+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)
+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)
Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ + \widehat {{B_3}} = 180^\circ \Rightarrow \widehat {{B_3}} = 180^\circ - 40^\circ = 140^\circ \)
c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ + \widehat {{B_1}} = 180^\circ \Rightarrow \widehat {{B_1}} = 180^\circ - 40^\circ = 140^\circ \)
Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)
Hình 22 cho biết a // b và \(\widehat{A}_4\) = \(37^o\) .
a) Tính \(\widehat{B_1}\) .
b) So sánh \(\widehat{A_1}\) và \(\widehat{B_4}\) .
c) Tính \(\widehat{B_2}\)
Cho hình 1 . Biết a//b, \(\widehat{A_4}=42^0\)
a) Hãy nêu tên một cặp góc so le trong và một cặp góc đồng vị.
b) Tính \(\widehat{B_1},\widehat{B_2}\)
Các bạn giúp mik với!! ai xong mik tick cho!!
\(a,\text{So le trong: }\widehat{A_1}\text{ và }\widehat{B_2}\\ \text{Đồng vị: }\widehat{A_1}\text{ và }\widehat{B_4}\\ b,a\text{//}b\Rightarrow\widehat{A_1}=\widehat{B_2}=42^0\\ \Rightarrow\widehat{B_1}=180^0-\widehat{B_2}=138^0\left(\text{kề bù}\right)\)
Cho hình vẽ, biết AB // CD, \(\widehat{D}=90^0\), \(\widehat{C_1}=61^0\)
a) Tính \(\widehat{A}\)
b) Tính \(\widehat{C_2}\),\(\widehat{B_1}\)\(\widehat{B_2}\)
Giải:
a) Ta có: AB // CD, CD _|_ a
\(\Rightarrow\) AB _|_ a
\(\Rightarrow\widehat{A}=90^o\)
b) Vì AB // CD nên:
\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )
\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )
\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )
Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )
Vậy a) \(\widehat{A}=90^o\)
b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)
Hình vẽ có rồi nha!!!!!!
a) Vì AB // CD (gt)
\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)
mà \(\widehat{D} = 90^0\) (gt)
\(\Rightarrow\)\(\widehat{A} = 90^0\)
b) Ta có:
\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)
\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)
\(\widehat{C2} = 119^0\)
Vì AB // CD (gt)
\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)
\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)
Hình 22 cho biết a // b và \(\widehat{A}_4=37^0\)
a) Tính \(\widehat{B_1}\)
b) So sánh \(\widehat{A_1}\) và \(\widehat{B_4}\)
c) Tính \(\widehat{B_2}\)
Vì a // b nên ta có:
a) ^B1 = ^A4 = 37° (2 góc so le trong)
Vậy ^B1 = 37°.
b) ^A1 = ^B4 (2 góc đồng vị).
c) ^B2 + ^A4 = 180° (2 góc trong cùng phía)
hay ^B2 + 37° =180°.
=> ^B2 = 180° - 37° = 143°.
Vậy ^B2 = 143°.
Cho hình vẽ sau: https://scontent.fsgn5-1.fna.fbcdn.net/v/t1.15752-9/72553220_465790920811870_6590605608947286016_n.png?_nc_cat=101&_nc_oc=AQnWU6dSKl8dKnXKRDuhswJmAQA1PCZs9SE2i0ypFOssa5Rt1nzPbp_EYQGgczI2ama5fhA0RehHV7KtO8IzW6YD&_nc_ht=scontent.fsgn5-1.fna&oh=ccd9a35086c6676d218d3a9a3dbe1da0&oe=5E2AAA7B
biết a//b và \(\widehat{A_2}=80^0\)
a) tìm cặp góc sole trong bằng nhau
b) Tìm các cặp góc đông vị bằng nhau
c) Tính \(\widehat{A_3};\widehat{A_4};\widehat{B_1};\widehat{B_2}\)
Cho \(\Delta ABC\)có\(\widehat{ABC}=55^o\), trên cạnh AC lấy điểm D (D ko trùng với A và C)
a. Tính độ dài AC, biết AD=4cm, CD=3cm.
b. Tính số đo của\(\widehat{DBC}\), biết \(\widehat{ABD}=30^o\).
c. Từ B dựng tia Bx sao cho \(\widehat{DBx}=90^o\). Tính số đo \(\widehat{ABx}\)(Với số đo các góc theo câu b.)
d. Trên cạnh AB lấy điểm E (E ko trùng với A và B). Chứng minh rằng 2 đoạn thẳng BD và CE cắt nhau.
1. Cho hình vẽ , biết
a // b ; c ⊥ a và \(\widehat{DCB}\) = 30'( độ ) . Tính \(\widehat{D_1}\) và \(\widehat{B_2}\)
theo tính chất đường phân giác ta có\(\frac{AN}{BN}=\frac{AC}{BC}\Leftrightarrow\frac{AN+BN}{BN}=\frac{AC+BC}{BC}\)
\(BN=\frac{AB.BC}{AC+BC}\) .tương tự suy ra \(CM=\frac{AC.BC}{AB+BC}\)
giả sử \(AB\ge AC\)\(\Rightarrow BN\ge CM\)theo kết quả vừa tính được
có \(AB\ge AC\Rightarrow\widehat{B}\le\widehat{C}\Leftrightarrow\hept{\begin{cases}\widehat{B_1}\le\widehat{C_1}\\\widehat{B_2\le}\widehat{C_2}\end{cases}}\)
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )\(\widehat{D_{12}}=\widehat{C_{23}}\)
mà \(\widehat{B_2}=\widehat{D_1}\le\widehat{C_2}\Rightarrow\widehat{D_2}\ge\widehat{C_3}\Rightarrow\)\(CM\ge DM=BN\)
\(\Rightarrow\hept{\begin{cases}BN\ge CM\\BN\le CM\end{cases}\Rightarrow BN=CM\Rightarrow AB=AC\Rightarrow}\)tam giác ABC cân
trường hợp \(AB\le AC\) làm tương tự
theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC
BN=AB.BCAC+BC .tương tự suy ra CM=AC.BCAB+BC
giả sử AB≥AC⇒BN≥CMtheo kết quả vừa tính được
có AB≥AC⇒^B≤^C⇔{
^B1≤^C1 |
^B2≤^C2 |
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23
mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN
⇒{
BN≥CM |
BN≤CM |
⇒BN=CM⇒AB=AC⇒tam giác ABC cân
trường hợp AB≤AC làm tương tự
Tứ giác \(ABCD\) có số đo \(\widehat A = x;\;\widehat B = 2x;\;\widehat C = 3x;\;\widehat D = 4x\). Tính số đo các góc của tứ giác đó.
Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên ta có:
\(\begin{array}{l}x + 2x + 3x + 4x = 360^\circ \\10x = 360^\circ \\x = 360^\circ :10\\x = 36^\circ \end{array}\)
Suy ra:
\(\widehat A = 36^\circ ;\;\widehat B = 72^\circ ;\;\widehat C = 108^\circ ;\;\widehat D = 144^\circ \)