cho x, y thỏa man: x^2 + 6(x+y) +2xy +2y^2+6=0. tìm GTLN , GTNN cua S=x+y
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
giúp mik vs ạ!!!
Cho x,y thỏa mãn: x^2 + 2y^2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .
a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)
\(\Leftrightarrow1\le x+y\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)
mk nghỉ đề này không phải của lớp 8 đâu phải không :)
Cho các số x,y thỏa mãn x^2+2xy+3y^2=6
Tìm gtln và gtnn của M=x+2y
M=x+2y =>x=M-2y
(M-2y)2+2.(M-2y).y+3.y2=6
3.y2-2My+M2-6=0
Pt có nghiệm khi \(\Delta'\ge0\\ M^2-3.\left(M^2-6\right)\ge0\\ -2M^2+18\ge0\\ M^2\le9\\ \)
\(-3\le M\le3\)
cho x,y thỏa mãn : x^2+2xy+8(x+y)+2y^2+12=0. Tìm GTNN và GTLN của S=x+y=1
\(x^2+2xy+y^2+8\left(x+y\right)+16+y^2-4=0\)
\(\Leftrightarrow\left(x+y\right)^2+8\left(x+y\right)+16=4-y^2\)
\(\Leftrightarrow\left(x+y+4\right)^2=4-y^2\le4\)
\(\Rightarrow-2\le x+y+4\le2\)
\(\Rightarrow-5\le x+y+1\le-1\)
Bài 1: Tìm min max
x^2 +2xy +7(x+y) +2y^2 +10 = 0
Bài 2 : cho x, y không âm thỏa mãn x+y = 4 tìm GTNN GTLN
p= x^4y+xy^4+x^3+y^3-5(x^2 + y ^2 + 14x^2y^2 -58xy +6
--------- Giúp nha !
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2