Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Thảo
Xem chi tiết
Bùi Hoàng Tuấn Kiệt
Xem chi tiết
Minh Nhân
26 tháng 7 2021 lúc 18:15

\(x^2y+xy^2+x+y=2010\)

\(\Rightarrow xy\cdot\left(x+y\right)+x+y=2010\)

\(\Rightarrow\left(xy+1\right)\cdot\left(x+y\right)=2010\)

Với : \(xy=11\)

\(\Rightarrow x+y=\dfrac{2010}{12}=\dfrac{335}{2}\)

\(C=x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{335}{2}\right)^2-2\cdot11=\dfrac{112137}{4}\)

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 21:56

Ta có: \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Leftrightarrow x+y=\dfrac{2010}{11+1}=\dfrac{2010}{12}=\dfrac{335}{2}\)

Ta có: \(C=x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=\left(\dfrac{335}{2}\right)^2-2\cdot11\)

\(=\dfrac{112137}{4}\)

Mỹ Ngọc Trần
Xem chi tiết
Nguyễn Thị Bảo Trâm
Xem chi tiết
Bảo Nam
10 tháng 2 2019 lúc 21:51

Trả lời :

Ta có :

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

Hok tốt

Nguyễn Nhật Minh
10 tháng 2 2019 lúc 22:21

a) \(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y+2\right)\left(x+y+5\right).\)

b) \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)

\(\Leftrightarrow12\left(x+y\right)=2010\)

\(\Leftrightarrow x+y=\frac{335}{2}\)

\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)

Vậy \(x^2+y^2=\frac{112137}{4}.\)

Nguyen Duc Thong
Xem chi tiết
Lê Quang Nghĩa
7 tháng 12 2022 lúc 22:07

:/

 

Girl 2k3
Xem chi tiết
Laura
26 tháng 10 2019 lúc 19:45

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:05

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:23

\(c)2xy-10y-x=13\)

\(\Leftrightarrow x\left(2y-1\right)-2y.5+5=18\)

\(\Leftrightarrow x\left(2y-1\right)-5\left(2y-1\right)=18\)

\(\Leftrightarrow\left(2y-1\right)\left(x-5\right)=18\)

\(\Leftrightarrow2y-1;x-5\inƯ\left(18\right)\)

\(\RightarrowƯ\left(18\right)\in\left\{-1;1;-2;2;-3;3;-6;6;-9;9;-18;18\right\}\)

Vì 2y-1  luôn lẻ

=>2y-1 thuộc {-1;1;-3;3;-9;9}

=> Làm  tương tự nhé

\(e)xy-2y^2+8y-3x=13\)

\(\Leftrightarrow xy-2y^2+2y+6y-3x-6=7\)

\(\Leftrightarrow y\left(x-2y+2\right)+3\left(-x+2y-2\right)=7\)

\(\Leftrightarrow y\left(x-2y+2\right)-3\left(x-2y+2\right)=7\)

\(\Leftrightarrow\left(x-2y+2\right)\left(y-3\right)=7\)

Tự khai triển như các câu trên.

Mình đg bận nên ko lm đc hết câu.

Khách vãng lai đã xóa
NGUYỄN HƯƠNG GIANG
Xem chi tiết
Lê Xuân Phú
28 tháng 2 2022 lúc 21:06

CHỈ GỢI Ý THÔI 

M = (x^2 - xy) + (xy^2 - y^3) - x - y^2 + 5

M = x(x - y) + y^2(x - y) - x - y^2 + 5 

.....

PHẦN N KO BIẾT LÀM

Khách vãng lai đã xóa
thuyhang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:18

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Nguyễn Lê Phước Thịnh
8 tháng 9 2021 lúc 14:20

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

Nguyễn Phan Thục Trinh
Xem chi tiết
Nguyễn Hưng Phát
30 tháng 1 2019 lúc 21:05

a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)

Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)