Tìm số dư khi chia \(\left(n^3-1\right)^{111}.\left(n^2-1\right)^{333}\)cho n
tìm số dư khi chia\((n^3-1)^{111}\cdot(n^2-1)^{333}\)cho n
1)tìm số dư khi chia A, b cho 2 biết
\(A=\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right);\left(n\in N\right)\)
\(B=1995^n+1996^n+1997^n;\left(n\in N\right)\)
1/ Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia cho 11 dư 5 ; chia cho 13 dư 7
2/ Chứng minh rằng : \(10^n+5^3⋮9\)
3/ Tìm x, y \(\in N\) biết : \(\left(x+1\right)\left(2y-5\right):143\)
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9
Tìm số dư khi chia (n3 -1)111.(n2 -1)333 cho n
ta có n3\(\equiv\)0(mod n)
=> n3-1\(\equiv\)-1(mod n)
=>( n3-1)111\(\equiv\)-1(mod n)
Ta lại có
n2\(\equiv\)0(mod n)
=> n2-1\(\equiv\)-1(mod n)
=>( n2-1)333\(\equiv\)-1(mod n)
vậy số dư khi chia (n3-1)111.( n2-1)333 cho n là 1
1 Tìm số dư khi chia A ,B cho 2 biết
A=\(\left(4^n+6^n+8^n+10^n\right)-\left(3^n+5^n+7^n+9^n\right)\left(n\in N\right)\)
B=\(1995^n+1996^n+1997^n\left(n\in N\right)\)
2.Tìm chữ số tận cùng của \(9^{9^{2000}}\)
b.tìm 3 chứ số tận cùng của \(2008^{100}\)
3.tìm (x,y)thõa mãn:\(\left(\frac{2x-5}{9}\right)^{2016}+\left(\frac{3y+0,4}{3}\right)^{2012}=0\)
b,\(x\left(x+y\right)=\frac{1}{48}\) và \(y\left(x+y\right)=\frac{1}{24}\)
a) Tìm hai số tự nhiên a,b biết BCNN(a,b) + ƯCLN(a,b) = 15
b) Tìm x nguyên thỏa mãn \(\left|x+1\right|+\left|x-2\right|+\left|x+7\right|=5x-10\)
c) Chứng minh rằng bình phương của một số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
d) Tìm số nguyên n sao cho \(n^2+5n+9\) là bội của n+3
Bạn nào giúp được câu nào thì giúp mk nha
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
`b)` - Ta thấy : `|x+1|+|x-2|+|x+7|>=0`
`-> 5x-10>=0`
`-> 5x>=10`
`-> x>=2`
`-> |x+1|=x+1;|x-2|=x-2;|x+7|=x+7`
- Vậy ta có :
`(x+1)+(x-2)+(x+7)=5x-10`
`<=> x+1+x-2+x+7=5x-10`
`<=> 3x+6=5x-10`
`<=> 3x-5x=-10-6`
`<=> -2x=-16`
`<=> x=8`
1.Trong các số tự nhiên từ 1 đến 100 có bao nhiêu chữ số chia hết cho 2 nhưng không chia hết cho 5.
2.Tính tổng các số có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2.
3.Chứng minh rằng:
a.\(\left(2003^{2002}+2005^{2004}\right)⋮2\)
b.\(\left(333^3+111^{111}\right)\) không chia hết cho 5.
(n3-1)111.n. (n2-1)333 tìm số dư khi chia đa thức trên cho n
\(\left(n^3-1\right)^{111}.n.\left(n^2-1\right)^{333}\) chia hết cho n ( tức là dư 0 )
Vì mấy nhân cho n đều chia hết cho n
Đk n khác 0
Vì n chia hết cho n nên (n3-1)111.n. (n2-1)333 chia n dư 0
Bài 1 : Chứng minh rằng với mọi số nguyên n
a) \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5
b)\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)chia hết cho 6
c)\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)chia hết cho 12
Bài 2:
Tìm x biết : \(\left(4x+3_{^{ }}\right)^3+\left(5-7x\right)^3+\left(3x-8\right)^3=0\)
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)
Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)
Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)
+) a = 0 suy ra \(x=-\frac{3}{4}\)
+) b = 0 suy ra \(x=\frac{5}{7}\)
+) c = 0 suy ra \(x=\frac{8}{3}\)
Vậy...