1. Chứng minh rằng :
\(\left|2m-5\right|\le5\)
(Sử dụng ít nhất là hai cách)
Chứng minh rằng:
\(\left(x-3\right)\left(5-x\right)\le1,\forall3\le x\le5\)
Ta có \(\left(x-3\right)\left(5-x\right)=-\left(x^2-8x+15\right)\)
\(=-\left(x^2-8x+16-1\right)=-\left(x-4\right)^2+1\)
Vì \(3\le x\le5\)nên \(-\left(x-4\right)^2+1\le1\)hay \(\left(x-3\right)\left(5-x\right)\le1\)
Em làm Cách 2: Sử dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}.\)Chứng minh :Biến đổi tương đương ta được \(\left(x-y\right)^2\ge0\)(luôn đúng)
Với \(3\le x\le5\Rightarrow\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}}\)
Khi đó: \(\left(x-3\right)\left(5-x\right)\le\frac{\left(x-3+5-x\right)^2}{4}=1\)
Dấu '=' xảy ra khi \(x-3=5-x\Leftrightarrow x=4\left(tmđk\right)\)
@Nguyễn Linh Chi
Điều kiện đề bài cho nên viết thôi ạ
Có gì sai mong ..... thông cảm ạ
Chứng minh rằng các câu sau luôn có nghiệm:
a.\(x^2+mx-5=0\)
b.\(x^2+mx-m-1=0\)
c.\(x^2+\left(m+2\right)x+2m-5=0\)
d.\(x^2-2\left(2m-1\right)x+m-20=0\)
a: \(\Delta=m^2+20>0\)
=>Phương trình luôn có nghiệm
b: \(\Delta=m^2-4\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2>=0\)
nên phương trình luôn có nghiệm
c: \(\Delta=\left(m+2\right)^2-4\left(2m-5\right)\)
\(=m^2+4m+4-8m+20=m^2-4m+24\)
\(=\left(m-2\right)^2+20>0\)
=>Phương trình luôn có nghiệm
Chứng minh rằng:
a) \(11.\left(-3\right)+15<11.\left(-2\right)+15\)
b) \(\left(-4\right).3-9\le\left(-4\right).\left(-9\right)-9\)
c) \(5.\left(-3\right)+8\le5.\left(-4\right)+8\)
a) Vì (-3) < (-2)
b) Vì -(3) < -(-9) {nhân với (-4)}
c) Vì (-3)>(-4)
Cho các số thực dương x, thỏa mãn điều kiện \(2x+3y=5\)
Chứng minh rằng: \(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}\le5\)
\(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}< =5\)
\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{\left(2x+2\right)y}< =5\)
\(< =>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)
Áp dụng bất đẳng thức cauchy ta được :
\(\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =\frac{x+y+4}{2}+\frac{2y+x+1}{2}\)
\(=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)
\(=>\sqrt{\left(x+2\right)\left(y+2\right)}+\sqrt{2y\left(x+1\right)}< =5\)
Vậy ta có điều cần phải chứng minh
Cho E=\(\left\{x\in Z,\left|x\right|\le5\right\}\) ; F=\(\left\{x\in N,\left|x\right|\le5\right\}\); B=\(\left\{x\in Z,\left(x-2\right)\left(x+1\right)\left(2x^2-x-3=0\right)\right\}\)
a. Chứng minh: A⊂E và B⊂E
b. Tìm quan hệ của hai tập \(C_E^{A\cap B}\) và \(C^{A\cup B}_E\)
c. CM rằng: \(C^{A\cap B}_E\)⊂\(C_E^A\)
Tập hợp A là tập nào vậy bạn?
Bài 11. Chứng minh rằng các hàm số sau đây luôn đồng biến với mọi số thực m ?
a: \(f\left(x\right)=\left(m^2+1\right)x+2m+1\)
b: \(f\left(x\right)=\dfrac{mx-1}{x+m}\)
(Lạng Sơn)
Cho \(x,y\) là hai số dương thở mãn điều kiện \(2x+3y=5\). Chứng minh rằng \(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}\le5\).
Cho \(a,b,c,d\in R\)và \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)=16\)
Chứng minh : \(-3\le ab+ac+ad+bc+bd+cd+abcd\le5\)
Cho \(x,y,z\in\left[0;2\right]\) và \(x+y+z=3\)
Chứng minh rằng : \(x^2+y^2+z^2\le5\)
Do \(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)+xyz\ge0\)
\(\Leftrightarrow8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz+xyz\ge0\)
\(\Leftrightarrow xy+yz+zx\ge2\)
Mặt khác \(x+y+z=3\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)
\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\le5\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị