Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Thục Nhi

Những câu hỏi liên quan
Ngô Thành Phát
Xem chi tiết
Khaaaaaa
Xem chi tiết
Phạm Mai Khôi
Xem chi tiết

Chọn B là đúng rồi em

Nguyễn Văn Lĩnh :))
18 tháng 3 2023 lúc 14:18

b

Đỗ Thương Huyền
Xem chi tiết

nhỏ quá bn !

Thảo NGUYÊN
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 22:44

a: góc yAt'=180 độ-60 độ=120 độ

góc yAt'=góc yOx

mà hai góc này đồng vị

nên At'//Ox

b: góc mOA=góc xOy/2=60 độ

góc nAO=góc OAt/2=60 độ

=>góc mOA=góc nAO

=>Om//An

Minh Anh
Xem chi tiết
Tô Mì
6 tháng 4 2023 lúc 21:57

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

Tô Mì
6 tháng 4 2023 lúc 22:16

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

tranthuylinh
Xem chi tiết
missing you =
25 tháng 6 2021 lúc 14:18

a,theo giả thiết E lần lượt là hình chiếu của H lên AB,

H là chân đường vuông góc kẻ từ B xuống AC

\(=>\)\(\angle\left(BEH\right)=\angle\left(BHA\right)=90^o\)

có \(\angle\left(B\right)chung\)\(=>\Delta BEH\sim\Delta BHA\left(g.g\right)\left(dpcm\right)\)

b, ta có E,F là hình chiếu của H trên AB,BC

\(=>HE\perp AB,HF\perp BC\)

mà \(BH\perp AC\left(gt\right)=>\)\(\Delta BHA\) vuông tại H có HE là đường cao

và \(\Delta BHC\) vuông tại H có HF là đường cao

theo hệ thức lượng

\(=>BH^2=BE.BA=BF.BC\left(dpcm\right)\)

Nguyễn Thanh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:41

Bạn chỉ cần áp dụng cái phân tích đa thức thành nhân tử bằng phương pháo đặt nhân tử chung là ra rồi

Vy trần
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 10:48

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Akai Haruma
23 tháng 10 2021 lúc 14:10

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

abcd
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 13:03

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6(cm)

BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\\AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(tanABC=\dfrac{AC}{AB}=\dfrac{3}{2}\)

nên \(\widehat{ABC}\simeq56^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2=2FE^2\)