Chứng minh bất đẳng thức:
\(a^2+ab+b^2\ge0\)
Chứng minh bất đẳng thức sau:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge18ab\) \(\left(a,b\ge0\right)\)
Áp dụng BĐT cosi:
\(\left(2+a+b\right)\left(a+4b+ab\right)\ge3\sqrt[3]{2ab}\cdot3\sqrt[3]{4a^2b^2}=9\sqrt[3]{8a^3b^3}=9\cdot2ab=18ab\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a=b=2\\a=4b=ab\end{matrix}\right.\left(\text{vô lí}\right)\)
Vậy dấu \("="\) ko xảy ra hay \(\left(2+a+b\right)\left(a+4b+ab\right)>18ab\)
Cho\(a\ge0,b\ge0\) Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a - 2√ab + b ≥ 0
<=> a + b ≥ 2√ab
<=> (a + b)/2 ≥ √ab
dau "=" xay ra khi √a - √b = 0 <=> a = b
BĐT tương đương :
\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Vậy ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( với mọi a , b )
Vậy ..............
(Lần đầu tiên nguyên lí Dirichlet được sử dụng trong chứng minh bất đẳng thức!)
Cho \(a,b,c\ge0\). Chứng minh: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
\(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)
Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)
Vậy BĐT đầu luôn đúng
Thích Dirichlet thì chơi Dirichlet
Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.
Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh
\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)
Dấu = xảy ra khi a = b = c = 1
Em có cách biến đổi tương đương nhưng không đẹp lắm:(
W.L.O.G: \(c=min\left\{a,b,c\right\}\)
\(VT-VP=\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)\ge0\)
Ta có đpcm.
chứng minh bất đẳng thức: \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2\ge0\)
Lời giải:
BĐT tương đương với \((a^2+ab+ac)(a^2+ac+ab+bc)+b^2c^2\geq 0\)
Đặt \(a^2+ab+ac=t\)
BĐT cần chứng minh \(\Leftrightarrow t(t+bc)+b^2c^2=(t-\frac{bc}{2})^2+\frac{3b^2c^2}{4}\geq 0\)
Luôn đúng vì bình phương của một số thực luôn là số không âm
Dấu bằng xảy ra khi \(2(a^2+ab+ac)=bc\) và \(bc=0\)
Chứng minh các bất đẳng thức sau :
a) \(2a^2+b^2+c^2\ge2a\left(b+c\right)\).
b) \(a^4-a^3b-ab^3+b^4\ge0\)
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
a, Ta có : \(\left(a-b\right)^2\ge0< =>a^2-2ab+b^2\ge0< =>a^2+b^2\ge2ab\)
\(\left(a-c\right)^2\ge0< =>a^2-2ac+c^2\ge0< =>a^2+c^2\ge2ac\)
Cộng theo vế hai bất đẳng thức sau : \(a^2+b^2+a^2+c^2\ge2ac+2ab< =>2a^2+b^2+c^2\ge2a\left(b+c\right)\left(đpcm\right)\)
Dấu = xảy ra khi và chỉ khi \(a=b=c\)
a) 2a2 + b2 + c2 ≥ 2a( b + c )
<=> 2a2 + b2 + c2 ≥ 2ab + 2ac
<=> 2a2 + b2 + c2 - 2ab - 2ac ≥ 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2ac + c2 ) ≥ 0
<=> ( a - b )2 + ( a - c )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Đẳng thức xảy ra <=> a = b = c
b) a4 - a3b - ab3 + b4 ≥ 0
<=> a3( a - b ) - b3( a - b ) ≥ 0
<=> ( a - b )( a3 - b3 ) ≥ 0
<=> ( a - b )( a - b )( a2 + ab + b2 ) ≥ 0
<=> ( a - b )2[ ( a2 + ab + 1/4b2 ) + 3/4b2 ] ≥ 0
<=> ( a - b )2[ ( a + 1/2b )2 + 3/4b2 ) ≥ 0 ( đúng )
Vậy bđt được chứng minh
Đẳng thức xảy ra <=> a = b
Bài bất đẳng thức hay
Với \(a,b,c\ge0\)
Chứng minh rằng \(n\left(a^2+b^2+c^2\right)+2abc+n^3\ge2n\left(ab+bc+ac\right)\)
Với n = 1 đó là một kết quả rất quen thuộc:)) thôi em vào bài luôn, ko thì bị nhiều bạn bảo "nói linh tinh":v Em thử, ko chắc đâu nha, a thử check xem.
Theo nguyên lí Dirichlet, tồn tại ít nhất 2 trong 3 số a - n; b - n; c - n đồng dấu. Giả sử 2 số đó là a -n và b - n.
Thế thì \(\left(a-n\right)\left(b-n\right)\ge0\Rightarrow2abc\ge2acn+2bcn-2cn^2\)
Suy ra \(LHS\ge n\left(a^2+b^2+c^2\right)+\left(2acn+2bcn-2cn^2\right)+n^3\)
\(=n\left(a^2+b^2\right)+nc^2+n^3-2cn^2+2n\left(ac+bc\right)\)
\(\ge2n\left(ab+bc+ca\right)+nc^2+n^3-2cn^2\)
\(=2n\left(ab+bc+ca\right)+n\left(c^2+n^2-2cn\right)\)
\(=2n\left(ab+bc+ca\right)+n\left(c-n\right)^2\ge2n\left(ab+bc+ca\right)=RHS\)
Vậy ta có đpcm.
Đẳng thức xảy ra khi \(a=b=c=n\)
Cho \(a,b,c,k>0\). Chứng minh bất đẳng thức :
\(\Sigma_{cyc}\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
Haiz giải ra rồi
Ta có : \(VT=\Sigma\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2-2kbc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2+k^2b^2+c^2+2ka^2-2kbc-2ka^2-k^2b^2-c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{2kbc-2ka^2+2ka^2+k^2b^2+c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{k^2b^2+2kbc+c^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT=\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge\Sigma\left[1-\left(\frac{k^2b^2}{k^2b^2+ka^2}+\frac{c^2}{ka^2+c^2}\right)\right]\)
\(=3-\left(\frac{k^2b^2+ka^2}{k^2b^2+ka^2}+\frac{ka^2+c^2}{ka^2+c^2}+\frac{k^2b^2+c^2}{k^2b^2+c^2}\right)=3-3=0\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\k>0\end{matrix}\right.\)
Ta có: \(1-\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\)
Ta có thể viết lại bất đẳng thức thành
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\le3\)
Sử dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{k\left(a^2+kb^2\right)+c^2+ka^2}\le\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}\)
Tương tự rồi cộng lại, ta có điều phải chứng minh. Đẳng thức xảy ra khi \(a=b=c\), hoặc \(a=\frac{b}{k}=\frac{c}{k^2}\), hoặc \(b=\frac{c}{k}=\frac{a}{k^2}\), hoặc \(c=\frac{a}{k}=\frac{b}{k^{^2}}\)
Hoặc ta có thể làm như sau.
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}-\frac{k\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+kc^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Ta có đẳng thức sau:
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=3-p\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
\(\sum\frac{a^2-bc}{2ka^2+k^2b^2+c^2}=\frac{1}{2}\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Do đó, bất đẳng thức ban đầu tương đương với
\(\sum\frac{\left(b^2+kc^2\right)\left(a^2-bc\right)^2\left(kb-c\right)^2}{2ka^2+k^2b^2+c^2}\ge0\)
tth Akai Haruma Ace Legona Nguyễn Việt Lâm
Chứng minh bất đẳng thức a^2+b^2+1 >= ab+a+b
Ta có :
\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab-a-b\ge0\)
\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+2\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng)
chứng minh bất đẳng thức a^2+b^2=<1+ab