GTLN của hàm số \(y=2x-2x^2\) trên \(\left[0;1\right]\)là bnhiu?
Tìm GTLN; GTNN của các hàm số
\(a,y=3-4sin^2xcos^2x\)
\(b,y=\dfrac{-2}{3sinx-5}\) trên đoạn \(\left[0;\dfrac{\pi}{2}\right]\)
a, \(y=3-4sin^2x.cos^2x=3-sin^22x\)
Đặt \(sin2x=t\left(t\in\left[-1;1\right]\right)\).
\(\Rightarrow y=f\left(t\right)=3-t^2\)
\(\Rightarrow y_{min}=minf\left(t\right)=2\)
\(y_{max}=maxf\left(t\right)=3\)
b, \(y=f\left(t\right)=\dfrac{-2}{3t-5}\left(t\in\left[0;1\right]\right)\)
\(\Rightarrow y_{min}=minf\left(t\right)=\dfrac{2}{5}\)
\(y_{max}=maxf\left(t\right)=1\)
tìm GTLN của hàm số sau trên [0;2] a) \(y=x^2\left(4-2x\right)\)
b) \(y=x\left(2-x\right)^2\)
a.
\(y=x^2\left(4-2x\right)=x.x.\left(4-2x\right)\le\left(\dfrac{x+x+4-2x}{3}\right)^3=\dfrac{64}{27}\)
\(y_{max}=\dfrac{64}{27}\) khi \(x=4-2x\Rightarrow x=\dfrac{4}{3}\)
b.
\(y=x\left(2-x\right)^2=\dfrac{1}{2}.2x.\left(2-x\right)\left(2-x\right)\le\dfrac{1}{2}\left(\dfrac{2x+2-x+2-x}{3}\right)^3=\dfrac{32}{27}\)
\(y_{max}=\dfrac{32}{27}\) khi \(2x=2-x\Rightarrow x=\dfrac{2}{3}\)
Tìm GTLN; GTNN của các hàm số:
\(a,y=2sin^2x-cos2x\)
\(b,y=3\sqrt{1+sinx}-1\) trên đoạn \(\left[0;\dfrac{\pi}{3}\right]\)
a, \(y=2sin^2x-cos2x=1-2cos2x\)
Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)
\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)
Vẽ đồ thị của các hàm số \(y=3x+1\) và \(y=-2x^2\). Hãy cho biết:
a) Hàm số \(y=3x+1\) đồng biến hay nghịch biến trên R.
b) Hàm số \(y=-2x^2\) đồng biến hay nghịch biến trên mỗi khoảng: \(\left(-\infty;0\right)\) và \(\left(0;+\infty\right)\)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên R, thỏa mãn: \(2f\left(2x\right)+f\left(1-2x\right)=12x^2\). Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x=1\) là:
A. \(y=4x-2\)
B. \(y=2x+2\)
C. \(y=2x-6\)
D. \(y=4x-6\)
Tìm giá trị lớn nhất của hàm số \(y=f\left(x\right)=sin^2x+4sinx-5\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
A. \(-5\)
B. \(5\)
C. \(1\)
D. \(0\)
\(f'\left(x\right)=\left(sin^2x\right)'+4\cdot\left(sinx'\right)-5'\)
\(=2\cdot sinx\cdot cosx+4\cdot cosx=2cosx\left(sinx+2\right)\)
\(f'\left(x\right)=0\)
=>\(cosx\left(sinx+2\right)=0\)
=>\(cosx=0\)
=>\(x=\dfrac{\Omega}{2}+k\Omega\)
mà \(x\in\left[0;\dfrac{\Omega}{2}\right]\)
nên \(x=\dfrac{\Omega}{2}\)
\(f\left(\dfrac{\Omega}{2}\right)=sin^2\left(\dfrac{\Omega}{2}\right)+4\cdot sin\left(\dfrac{\Omega}{2}\right)-5\)
=1+4-5=0
\(f\left(0\right)=sin^20+4\cdot sin0-5=-5\)
=>Chọn D
Hàm số \(y=-x^2+2x+m-4\) đạt GTLN trên đoạn [-1;2] bằng 3 khi m thuộc
\(y=f\left(x\right)=-x^2+2x+m-4\)
\(f\left(-1\right)=m-7;f\left(2\right)=m-4;f\left(1\right)=m-3\)
\(\Rightarrow miny=f\left(1\right)=m-3=3\Leftrightarrow m=6\)
Tìm GTLN và GTNN của hàm số:
y=\(\sqrt{5-2sin^2xcos^2x}\)
y= sinx trên \(\left[\frac{\pi}{6};\frac{3\pi}{4}\right]\)
Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 2x}}{x}}&{khi\,\,x \ne 0}\\a&{khi\,\,x = 0}\end{array}} \right.\).
Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = a\)
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 = - 2\)
Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\). Khi đó:
\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a = - 2\).
Vậy với \(a = - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
Có bao nhiêu giá trị thực của tham số m để GTLN của hàm số y = x 2 + 2 x + m − 4 trên đoạn − 2 ; 1 bằng 4?
A. 1
B. 2
C. 3
D. 4
Đáp án B.
Phương pháp:
Sử dụng cách vẽ đồ thị hàm số y = f x
Cách giải:
Xét hàm số y = x 2 + 2 x + m − 4 = f x có:
y ' = 2 x + 2
y ' = 0 ⇔ x = − 1
Bảng biến thiên:
+) m ≥ 5 :
M a x − 2 ; 1 x 2 + 2 x + m − 4 = f 1 = m − 1 = 4 ⇒ m = 5
(Thỏa mãn)
+) 4 ≤ m < 5 :
M a x − 2 ; 1 x 2 + 2 x + m − 4 = M a x m − 1 ; 5 − m = 4
Mà
m − 1 > 5 − m , ∀ m ∈ 4 ; 5 ⇒ m − 1 = 4 ⇒ m = 5
(loại)
+) 1 ≤ m < 4 :
M a x − 2 ; 1 x 2 + 2 x + m − 4 = M a x 5 − m ; m − 1 = 4.
m ∈ − 1 ; 3 ⇒ max y = 5 − m = 4 ⇔ m = 1 t m
m ∈ − 1 ; 3 ⇒ max y = m − 1 = 4 ⇔ m = 5 k t m
+) m < 1 :
M a x − 2 ; 1 x 2 + 2 x + m − 4 = 5 − m = 4 ⇒ m = 1
(Không thỏa mãn)
Vậy m ∈ 4 ; 1 , có hai giá trị của m thỏa mãn.