Cho tam giác ABC có số đo các góc A,B, C lần lượt tỉ lệ nghịch với \(\dfrac{1}{2};\dfrac{1}{3};\dfrac{2}{5}\). Tính số đo ba góc A, B, C.
Cho tam giác ABC có số đo các góc A,góc B,góc C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo góc A, góc B, góc C.
Cho tam giác ABC có số đo các góc A, B ,C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo các góc
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ nghịch với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\).Tính số đo ba góc A, B, C
Bài làm
Gọi số đo của ba góc A, B, C lần lượt là x, y, z
Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)
=> \(x.\frac{1}{2}.\frac{1}{30}\)= \(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)
=> \(\frac{x}{60}\)= \(\frac{y}{90}\)= \(\frac{z}{75}\)
Vì theo định lí, tổng ba góc của tam giác là 180o
=> x + y + z = 180o
Áp dụng tính chất dãy tỉ số bằng nhau:
Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)
Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)
Vậy độ dài của góc A là 48o
độ dài của góc B là 72o
độ dài của góc C là 60o
# Chúc bạn học tốt #
cho tam giác ABC có số đo 3 góc A;B;C lần lượt tỉ lệ nghịch với 2;3;6.Tính số đo mỗi góc
Các bạn ơi giải bài toán này giúp mình với nhé !
Bài 1 :
a) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thận với 3 , 11 , 16 . Tìm số đo các góc của tam giác ABC .
b) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ nghịch với 15 , 16 , 48 . Tìm số đo các góc của tam giác ABC .
c) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thuân với 5 , 7 , 8 . Tìm số đo các góc của tam giác ABC.
d) Cho tam giác ABC cósố đo ba góc A , B , C tỉ lệ nghịch với 4 , 4, 3 . Tìm số đo các gọc của tam giác ABC .
mình rất cần bài này để chuẩn bị đi học !
bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó
1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.
2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.
Cho tam giác ABC có số đo các góc lần lượt tỉ lệ nghịch với 1/2;1/3;2/5.Tính số đo ba góc A,B,C
Tam giác ABC có số đo các góc A;B;C lần lượt tỉ lệ với 1; 2; 3.Tính số đo các góc của
tam giác ABC.
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4.
a) Lập tỉ lệ thức biểu diễn mối liên hệ giữa số đo ba góc của tam giác ABC.
b) Tính số đo mỗi góc của tam giác.
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
\(A^o,B^o,C^o\)lần lượt tỉ lệ với 7:7:16
\(\Rightarrow\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}\)và \(A^o+B^o+C^o=180^o\)( Tổng 3 góc trong của tam giác )
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{A^o}{7}=\frac{B^o}{7}=\frac{C^o}{16}=\frac{A^o+B^o+C^o}{7+7+16}=\frac{180^o}{30}=6^o\)
=> góc A = 42o , góc B = 42o , góc C = 96o
Tam giác ABC có số đo các góc A,B,C lần lượt tỉ lệ với 3;4;5. Tính số đo các góc của tam giác ABC.
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{180}{12}=15\)
Do đó: a=45; b=60; c=75