Tìm x biết \(\frac{32}{2^{2x+1}}\)
Tìm x,y,z,biết:
1)2x=3y=4z và 2x-5z=-6
2)\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}\) và 3x+5y-7z=32
Tìm x,y,z biết: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=32
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x+3y-z-2-6+3}{4+9-4}=\frac{27}{9}=3\)
\(\Rightarrow x=\frac{3\cdot4+2}{2}=7\)
\(\Rightarrow y=\frac{3\cdot9+6}{3}=11\)
\(\Rightarrow z=3\cdot4+3=15\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3x-6}{9}=\frac{z-3}{4}=\frac{2x+3y-z-2-6+3}{4+9-4}\)
= \(\frac{27}{9}\)
= \(3\)
\(\Rightarrow\)\(x=\frac{3.4+2}{2}=7\)
\(\Rightarrow\)\(y=\frac{3.9+6}{3}=11\)
\(\Rightarrow\)\(z=3.4+3=15\)
Tìm x,y,z biết
\(\frac{x}{2}=\frac{y}{5}=\frac{2}{3}\)và 2x+3y-2=32
\(\frac{x}{2}=\frac{y}{5}=\frac{2}{3}\Rightarrow\frac{2x}{4}=\frac{3y}{15}=\frac{2}{3}\)
Áp dụng dãy tỉ số = nhau ta có:
\(\frac{2x}{4}=\frac{3y}{15}=\frac{2}{3}=\frac{2x+3y-2}{4+15-3}=\frac{32}{16}=2\)
Suy ra: \(\frac{x}{2}=2\Rightarrow x=4\)
\(\frac{y}{5}=2\Rightarrow y=10\)
Tìm x biết :
a) \(\frac{32-x}{7}=\frac{x-42}{9}\)
b) \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\frac{32-x}{7}=\frac{x-42}{9}\)
=\(\frac{\left(32-x\right)9}{63}=\frac{\left(x-42\right)7}{63}\)
\(\Rightarrow\)\(\left(32-x\right)9=\left(x-42\right)7\)
=\(288-x9=x7-294\)
=\(288+294=x9+x7\)
=\(x=-36\frac{6}{16}\)
=\(x\times16=-582\)
\(x=-582\div16\)
a,\(\frac{32-x}{7}=\frac{x-42}{9}\)
\(\Leftrightarrow9\left(32-x\right)=7\left(x-42\right)\)
\(\Leftrightarrow288-9x-7x-294=0\)
\(\Leftrightarrow9x+7x=288-294\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
b. \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+3\right|=-4x^2+4x-1\)
\(\left|x+3\right|=x+3\)khi \(x+3\ge0\)hay \(x\ge-3\)
\(\left|x+3\right|=-\left(x+3\right)\)khi \(x+3< 0\)hay \(x< -3\)
với \(x\ge-3\Rightarrow x+3=-4x^2+4x-1\)
\(\Leftrightarrow4x^2-4x+1+x+3=0\)
\(\Leftrightarrow4x^2-3x+4=0\)\(\Leftrightarrow\)vô nghiệm
với \(x< -3\)\(\Rightarrow-x-3=-4x+4-1\)
\(\Leftrightarrow4x^2-4x+1-x-3=0\)
\(\Leftrightarrow4x^2-5x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{57}}{8}\left(tm\right)\\x=\frac{5-\sqrt{57}}{8}\left(L\right)\end{cases}}\)
tìm x, biết
1. \(\frac{x+1}{x-2}=\frac{3}{4}\)
2. \(\frac{52}{2x-1}=\frac{13}{30}\)
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
4. \(\frac{2x+3}{42}=\frac{3x-1}{32}\)
1.\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
<=>4x-3x=-6-4
<=>x=-10
2.\(\frac{52}{2x-1}=\frac{13}{30}\)
<=>52.30=(2x-1).13
<=>1560=26x-13
<=>-26x=-13-1560
<=>-26x=-1573
<=>x=60,5
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
<=>(2x-3).7=(x+1).4
<=>14x-21=4x+4
<=>14x-4x=4+21
<=>10x=25
<=>x=2,5
4.\(\frac{2x+3}{42}=\frac{3x-1}{32}\)
<=>(2x+3).32=42(3x-1)
<=>64x+96=126x-42
<=>64x-126x=-42-96
<=>-62x=-138
<=>x=69/31
tìm x,y,z biết
3x=2y ; 7x=5z, x-y+z=32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\) và 2x+3y-z=50
Ta có : 3x = 2y => x/2 = y/3
7x = 5z => x/5 = z/7
=> x/2 = y/3 ; x/5 = z/7
=> x/10 = y/15 ; x/10 = z/21
=> x/10 = y/15 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
đến đây xét x,y,z
Câu b tương tự
tìm x , y , z biết :
a ) 3x = 2y , 7y = 5z , x - y + z = 32
b ) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x + y + z = 49
c ) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
Do đó: x=20; y=30; z=42
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
Tìm x biết
(2,8x - 32) : \(\frac{2}{3}\)= -90
(4,5 - 2x) . \(1\frac{4}{7}\)= \(\frac{11}{14}\)
A/\(\left(2,8x-32\right):\frac{2}{3}=-90\)
\(\left(\frac{28}{10}x-32\right)=\frac{-90}{1}.\frac{2}{3}\)
\(\left(\frac{14}{5}x-32\right)=\frac{-30}{1}.\frac{2}{1}\)
\(\left(\frac{14}{5}x-32\right)=-60\)
\(\frac{14}{5}x=-60+32\)
\(\frac{14}{5}x=-28\)
\(x=\frac{-28}{1}:\frac{14}{5}\)
\(x=\frac{-28}{1}.\frac{5}{14}\)
\(x=\frac{-2}{1}.\frac{5}{1}=-10\)
B/\(\left(4,5-2x\right).1\frac{4}{7}=\frac{11}{14}\)
\(\left(\frac{45}{10}-2x\right).\frac{11}{7}=\frac{11}{14}\)
\(\left(\frac{9}{2}-2x\right)=\frac{11}{14}:\frac{11}{7}\)
\(\left(\frac{9}{2}-2x\right)=\frac{11}{14}.\frac{7}{11}\)
\(\left(\frac{9}{2}-2x\right)=\frac{1}{2}.\frac{1}{1}=\frac{1}{2}\)
\(2x=\frac{9}{2}-\frac{1}{2}\)
\(2x=\frac{8}{2}\)
\(x=\frac{8}{2}:\frac{2}{1}=\frac{8}{2}.\frac{1}{2}\)
\(x=\frac{4}{2}.\frac{1}{1}=\frac{4}{2}=2\)
tìm x nguyên: \(2^{5\left(\frac{1}{2}\right)^{2x}< \left(\frac{1}{32}\right)^{12}}\)