Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 15:33

\(\sqrt{4x^2-4x+1}=3-x\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\\ \Leftrightarrow2x-1=3-x\\ \Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\\ \sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\right)\left(x\ge-1\right)\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{9}+1+\sqrt{4}\right)=2\left(x+1\right)\\ \Leftrightarrow6\sqrt{x+1}=2\left(x+1\right)\\ \Leftrightarrow3\sqrt{x+1}=x+1\\ \Leftrightarrow\sqrt{x+1}\left(3-\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=8\left(tm\right)\end{matrix}\right.\)

Hồng Phúc
15 tháng 9 2021 lúc 15:36

a, ĐK: \(x\in R\)

\(\sqrt{4x^2-4x+1}=3-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3-x\)

\(\Leftrightarrow\left|2x-1\right|=3-x\)

TH1: \(\left\{{}\begin{matrix}2x-1\ge0\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{4}{3}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\1-2x=3-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x=-2\end{matrix}\right.\Leftrightarrow x=-2\)

Hồng Phúc
15 tháng 9 2021 lúc 15:38

b, ĐK: \(x\ge-1\)

\(\sqrt{9x+9}+\sqrt{x+1}-\sqrt{4x+4}=2\left(x+1\text{​​}\right)\)

\(\Leftrightarrow3\sqrt{x+1}+\sqrt{x+1}-2\sqrt{x+1}=2\left(x+1\right)\)

\(\Leftrightarrow\sqrt{x+1}=x+1\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

dinh huong
Xem chi tiết
Trần Ngọc Thiên Kim
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Khách vãng lai đã xóa
Trần Bảo Minh
11 tháng 1 2022 lúc 20:33

Hummmm

Khách vãng lai đã xóa
Hà Nguyễn Bảo Trâm
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 10 2021 lúc 18:03

\(x+\sqrt{4x^2-4x+1}=2\left(đk:x\le2\right)\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=2-x\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2-x\left(2\ge x\ge\dfrac{1}{2}\right)\\2x-1=x-2\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Norad II
18 tháng 10 2021 lúc 18:10

\(x+\sqrt{4x^2-4x+1}=2\)

\(\Leftrightarrow x+\sqrt{\left(2x\right)^2-2.2x.1+1^2}=2\)

\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=2\)

\(\Leftrightarrow\left|2x-1\right|=2-x\)

\(\Leftrightarrow2x-1=2-x\) hoặc \(2x-1=x-2\)

\(\Leftrightarrow3x=3\)                       \(\Leftrightarrow x=-1\)

\(\Leftrightarrow x=1\)

Vậy S = \(\left\{1;-1\right\}\)

Lê Kiều Trinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 14:46

\(\Leftrightarrow\left|2x+1\right|=\left|x+6\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)

ILoveMath
4 tháng 12 2021 lúc 14:46

ĐKXĐ: \(x\in R\)

\(\sqrt{4x^2+4x+1}=\sqrt{x^2+12x+36}\\ \Leftrightarrow\left|2x+1\right|=\left|x+6\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=x+6\\2x+1=-x-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{7}{3}\end{matrix}\right.\)

Ending of Story
Xem chi tiết
Lê Tài Bảo Châu
29 tháng 7 2021 lúc 0:08

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

Khách vãng lai đã xóa
Tú Thanh Hà
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Đào Thu Hiền
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Akai Haruma
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Thảo Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 4 2022 lúc 9:24

Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)

Theo đề, ta có phương trình:

a+1/a=2

\(\Leftrightarrow a+\dfrac{1}{a}=2\)

\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)

=>a=1

=>\(x=\sqrt{4x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

Lê Hương Giang
Xem chi tiết
Akai Haruma
22 tháng 6 2021 lúc 23:23

Lời giải:

a. ĐKXĐ: $x\geq 4$

PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$

$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$

$\Leftrightarrow |\sqrt{x-4}+2|=2$

$\Leftrightarrow  \sqrt{x-4}+2=2$

$\Leftrightarrow \sqrt{x-4}=0$

$\Leftrightarrow x=4$ (tm)

b. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$

$\Leftrightarrow |2x-1|=|x-3|$

\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)

c.

PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)

Mai Thị Thúy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 23:40

Bình phương hai vế ta được:

\(\begin{array}{l}3{x^2} - 4x + 1 = {x^2} + x - 1\\ \Leftrightarrow 2{x^2} - 5x + 2 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \frac{1}{2}\end{array} \right.\end{array}\)

Thay lần lượt 2 giá trị \(x = 2\) và \(x = \frac{1}{2}\) vào \({x^2} + x - 1 \ge 0\) ta thấy chỉ có \(x = 2\) thỏa mãn bất phương trình.

Vậy nghiệm của phương trình đã cho là \(x = 2\).