tim so nguyen to p biet rang:
a) p+94 , p+1994 la so nguyen to
b) p^2+4 va p^2-4 deu la so nguyen to
tim so nguyen to P sao cho P+94 va P+1994 deu la so nguyen to
1. số nguyên tố p không thể có dạng 3n + 1 (tức chia 3 dư 1) vì lúc đó
p + 1994 = 3n + 1995 = 3*(n + 665) là tích 2 số đều > 2 nên là hợp số. Số nguyên tố p cũng không thể có dạng 3n + 2 (tức chia 3 dư 2) vì lúc đó p + 94 = 3n + 96 = 3*(n + 32) là tích 2 số đều > 2 nên là hợp số. Vậy p phải chia hết cho 3, mà p là số nguyên tố nên p = 3.
=> chỉ có 1 số nguyên tố thỏa mãn đk.
2. Bạn ghi lại vì không có cặp (x, y, z, t) thỏa mãn đk. Ví dụ làm gì có x sao cho 27/4 = -x/3 vì lúc đó x = -81 / 4 đâu có là số nguyên
3. (7n² + 1)/6 = k với k tự nhiên
=> n² + 1 = 6k - 6n² = 6(k - n²) ♥
VP của ♥ chẵn nên VT cũng phải chẵn => n lẻ, tức n không có ước nguyên tố 2 => n / 2 là phân số tối giản
VP của ♥ chia hết cho 3 nên VT cũng phải chia hết cho 3 => n không có ước nguyên tố 3 (vì khi đó VT chia 3 dư 1)
Bai 1:tim so nguyen P biet P+2va P+4 deu la nguyen to
bai 2: tong 2^100×7×11+81^3 la nguen to hay hop so ( giai thich)
Bai 3: tim so nguyen to P de P +2,p+6,P+8 deu la cac so nguyen to
Nhanh nhanh giai giup nha moi nguoi toi sap bai kiem tra mot tiet may bai nay roi
tim so nguyen to p sao cho p+2 va p+4 deu la so nguyen to ???
xét: p +2; p +3 ; p +4 là 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
theo gt p +2 và p +4 là số nguyên tố > 3 nên p +2 và p +4 không chia hết cho 3
=> p + 3 chia hết cho 3 => p chia hết cho 3
mà p là số nguyên tố => p = 3
1) Tim so nguyen to P de co:
a) P+10 va P+14 deu la so nguyen to
b) P+2 ;P+6 va P+8 deu la so nguyen to
tim so nguyen to p biet p+2;p+6va p+8 deu la so nguyen to
cho p la so nguyen to lon hon 3. Biet 8p+1 va p deu la so nguyen to (p lon hon 3).Hoi p+100 la so nguyen to hay hop so
tim so nguyen to p sao cho:
a,p+2 va p+4 la so nguyen to
b,p+2 va p+6 va p+8 la so nguyen to
c,p+10 va p+14 la so nguyen to
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )
cho p la so nguyen to > 5 . biet p + 4 , p+3 , p+2 deu la so nguyen to . chung minh p +96 la hop so
Tim so nguyen to p de p, p+2, p+4 deu la cac so nguyen to
Nếu p = 2, ta có:
p + 2 = 2 + 2 = 4 là hợp số
Do đó, TH p = 2 (loại)
Nếu p = 3, ta có:
p + 2 = 3 + 2 = 5 là số nguyên tố
p + 4 = 3 + 4 = 7 là số nguyên tố
Các số còn lại đều là những số nguyên tố lớn hơn 3 nên chúng có dạng: 3k + 1 và 3k + 2 (k \(\in\) N*)
Nếu p = 3k + 1, ta có:
p + 2 = 3k + 1 + 2 = 3k + 3 là hợp số
Nên TH p = 3k + 1 (loại)
Nếu p = 3k + 2, ta có:
p + 2 = 3k + 2 + 2 = 3k + 4 là số nguyên tố
p + 4 = 3k + 2 + 4 = 3k + 6 là hợp số
Do đó, p = 3k + 2 cũng bị loại.
Vậy với p = 3 thì p, p + 2, p + 4 đều là các số nguyên tố.
+) nếu p = 2 thì p + 2 = 2 + 2 = 4 ( là hợp số,loại )
Vì p là số nguyên tố và p + 2 và p + 4 cũng là số nguyên tố nên p có các dạng : 3k,3k + 1,3k + 2 ( k \(\in\)N* )
+) nếu p = 3k mà p là số nguyên tố nên p = 3
thì p + 2 = 3 + 2 = 5 ; p + 4 = 3 + 4 = 7 ( đều là số nguyên tố , chọn )
+) nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . ( k + 1 ) \(⋮\)3 và > 3 nên p + 2 là hợp số ( loại )
+) nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3 . ( k + 2 ) \(⋮\)3 và > 3 nên p + 4 là hợp số ( loại )
Vậy p = 3 thì p, p + 2, p + 4 đều là số nguyên tố
Với P=1 => Cặp số: 1; 3; 5 => Thỏa mãn
P=2 => Cặp số: 2; 4; 6 => Không thỏa mãn
P=3 => Cặp số: 3; 5; 7 => Thỏa mãn
P>3 Do P là số nguyên tố nên p có dạng : 3k+1; 3k+2
+/ p=3k+1 => p+2=3k+1+2 = 3k+3=3(k+1) => p+2 Chia hết cho 3 => Không thỏa mãn
+/ p=3k+2 => p+4=3k+2+4 = 3k+6=3(k+2) => p+4 Chia hết cho 3 => Không thỏa mãn
=> Các số p>3 đều không thỏa mãn
Vậy p có 2 giá trị là: p=1 và p=3