Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Tiến Dũng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:54

Đk:\(y^2-2x-5y+6\ge0\)

Pt (1)\(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

TH1: Thay x=1 vào pt (2) ta đc: \(3\sqrt{y^2-5y+4}=y+9\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+9\ge0\\9\left(x^2-5y+4\right)=y^2+18y+81\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y\ge-9\\8y^2-63y-45=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{63+3\sqrt{601}}{16}\\y=\dfrac{63-3\sqrt{601}}{16}\end{matrix}\right.\) (tm)

TH2: Thay y=x+2 vào pt (2) ta đc:

\(\left(x-1\right)^2+3\sqrt{\left(x+2\right)^2-2x-5\left(x+2\right)+6}=x+2+9\)

\(\Leftrightarrow x^2-3x-10+3\sqrt{x^2-3x}=0\)

Đặt \(t=\sqrt{x^2-3x}\left(t\ge0\right)\)

Pttt: \(t^2-10+3t=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2=\sqrt{x^2-3x}\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=6\\y=1\end{matrix}\right.\) (tm)

Vậy \(\left(x;y\right)=\text{​​}\left\{\left(1;\dfrac{63+3\sqrt{601}}{16}\right);\left(1;\dfrac{63-3\sqrt{601}}{16}\right),\left(4;6\right),\left(-1;1\right)\right\}\)

Nguyễn Việt Lâm
5 tháng 7 2021 lúc 16:59

Xét pt đầu:

\(\left(x^2+x-2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

- Với \(x=1\) thay xuống pt dưới:

\(3\sqrt{y^2-5y+4}=y+9\) \(\left(y\ge-9\right)\)

\(\Leftrightarrow9\left(y^2-5y+4\right)=y^2+18y+81\)

\(\Leftrightarrow8y^2-63y-45=0\)

\(\Rightarrow y=\dfrac{63\pm3\sqrt{601}}{16}\) (thỏa mãn)

- Với \(y=x+2\) thay xuống pt dưới:

\(\left(x-1\right)^2+3\sqrt{x^2-3x}=x+11\) (ĐKXĐ: ....)

\(\Leftrightarrow x^2-3x+3\sqrt{x^2-3x}-10=0\)

Đặt \(\sqrt{x^2-3x}=t\ge0\)

\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x}=2\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow...\)

Đỗ Tiến Dũng
Xem chi tiết
Khang Diệp Lục
26 tháng 7 2021 lúc 19:17

Gọi giá ban đầu của đôi giày nếu không khuyến mãi là x(vnđ)

Giá tiền được giảm là: 65%x(vnđ)

Theo đề bài ra ta có: 

x-65%x=1 520 000

<=>35%x=1 520 000

<=> x=4 342 857,143

x=4 342 857,143

Vậy giá tiền ban đầu của chiếc giày là 4 342 857,143

Đỗ Tiến Dũng
Xem chi tiết
Chủ Trại Nuôi Vượn
Xem chi tiết
Nguyễn Tuấn Linh
Xem chi tiết
Lee Hà
27 tháng 8 2021 lúc 16:32

My brother didn't use to work hard when he was in university.

Despite being the boss, she works as hard as her employees.

Lyly
Xem chi tiết
Nguyễn Cẩm Uyên
17 tháng 9 2021 lúc 21:12

1.\(sin^2\alpha+cos^2\alpha=\left(\dfrac{AC}{BC}\right)^2+\left(\dfrac{AB}{BC}\right)^2\)

=\(\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2\left(pytago\right)}{BC^2}=1\)

2.ta có \(tan\alpha=\dfrac{AC}{AB}\)

\(\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{AC}{BC}}{\dfrac{AB}{BC}}=\dfrac{AC}{AB}\)

\(\Rightarrow tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)

3.ta có:\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2\)

=\(\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\)=\(\dfrac{1}{cos^2\alpha}\)

4.ta có :\(cot\alpha=\dfrac{AB}{AC}\)

\(\dfrac{cos\alpha}{sin\alpha}=\dfrac{\dfrac{AB}{BC}}{\dfrac{AC}{BC}}=\dfrac{AB}{AC}\)

\(\Rightarrow cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)

\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}\)=\(\dfrac{1}{sin^2a}\)

 

Tuyết Nhi TV
Xem chi tiết
Nguyen Thi Bich Ngoc
Xem chi tiết
Nguyễn Thị Việt Nga
17 tháng 7 2017 lúc 8:07

Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x

       =>(2x\(^2\)+3)\(^2\)  -7 luôn lớn hơn hoặc bằng -7 với mọi x

Vậy GTNN của biểu thức C là 7

Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0

                         =>2x\(^2\)+3  =0

                             2x\(^2\)      =-3

                              x\(^2\)       =\(\frac{-3}{2}\)

                              x            =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)  

Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)

leminhduc
17 tháng 7 2017 lúc 7:17

GTNN : ta co : (2x2+3)2 luôn lớn hơn hoặc bằng 0

               => để C đạt giá trị nhỏ nhất thì (2x2+3)2 =0

                  => C =0-7=-7

Đinh Đức Hùng
17 tháng 7 2017 lúc 21:40

Sai hết rùi kìa .... !!!!

Mình giải đúng nè !!!!

Ta có :

\(2x^2\ge0\forall x\)

\(\Leftrightarrow2x^2+3\ge3\forall x\)

\(\Leftrightarrow\left(2x^2+3\right)^2\ge3^2=9\forall x\)

\(\Rightarrow\left(2x^2+3\right)^2-7\ge9-7=2\forall x\) Có GTNN là 2 tại x = 0

Vật GTNN của C là 2 tại x = 0