Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 13:32

Ta có: \(\left(x-2\right)\left(x^2-7x+41\right)=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Thay x=2 vào (2), ta được:

\(2^2-2m+m^2-5m+8=0\)

\(\Leftrightarrow m^2-7m+12=0\)

\(\Leftrightarrow\left(m-3\right)\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=3\\m=4\end{matrix}\right.\)

Vậy: Có 2 giá trị nguyên của m thỏa mãn hai phương trình có nghiệm chung

Hằng Nguyễn
Xem chi tiết
miss
Xem chi tiết
Trần Quốc Đạt
12 tháng 1 2017 lúc 22:27

Ý tưởng như sau:

\(x^2+ax+1=0\) và \(x^2+bx+c=0\) là 2 pt có nghiệm chung nên hệ pt sau có nghiệm (nhận xét quan trọng):

\(\hept{\begin{cases}x^2+ax+1=0\\x^2+bx+c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)x=c-1\\x^2+ax+1=0\end{cases}}\)

Do \(a\ne b\) nên thay \(x=\frac{c-1}{a-b}\) xuống pt dưới được: \(\left(\frac{c-1}{a-b}\right)^2+\frac{a\left(c-1\right)}{a-b}+1=0\)

Hay \(\left(c-1\right)^2+a\left(c-1\right)\left(a-b\right)+\left(a-b\right)^2=0\)

-----

\(x^2+x+a=0\) và \(x^2+cx+b=0\) có nghiệm chung thì hệ pt sau có nghiệm:

\(\hept{\begin{cases}x^2+x+a=0\\x^2+cx+b=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(c-1\right)x=a-b\\x^2+x+a=0\end{cases}}}\)

Do \(a\ne b\) nên \(c\ne1\), thay \(x=\frac{a-b}{c-1}\) xuống pt dưới được:

\(\left(\frac{a-b}{c-1}\right)^2+\frac{a-b}{c-1}+a=0\) hay \(\left(a-b\right)^2+\left(a-b\right)\left(c-1\right)+a\left(c-1\right)^2=0\)

-----

Đặt \(x=a-b,y=c-1\)

Ta có hệ: \(\hept{\begin{cases}x^2+axy+y^2=0\\x^2+xy+ay^2=0\end{cases}\Rightarrow\left(a-1\right)xy=\left(a-1\right)y^2}\)

Nhớ rằng \(a=1\) không xảy ra vì khi đó \(x^2+ax+1=0\) vô nghiệm.

Vậy \(a\ne1\), do \(y\ne0\) nên \(x=y\). Tức là \(a-b=c-1\).

Tới đây quay lại mấy cái nghiệm chung sẽ thấy các nghiệm chung đều là \(1\).

Mà như vậy thì \(b+c=-1,a=-2\) nên \(a+b+c=-4\)

Nguyễn Thị Thu Trang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2019 lúc 12:01

Chọn đáp án B

Gọi x 0 là nghiệm thực chung của 2 phương trình

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ x 0 2 + a x 0  + 1 =  x 0 2 -  x 0  - a ⇔ (a + 1) x 0 = -(a + 1) ⇔  x 0  = -1

Thay  x 0  = -1 vào phương trình  x 0 2 + a  x 0  + 1 = 0 tìm được a = 2

Phùng Minh Phúc
Xem chi tiết
An Thy
4 tháng 6 2021 lúc 20:05

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

Vuy năm bờ xuy
5 tháng 6 2021 lúc 2:38

\(x^3+3x^2+2x=0\left(1\right)\)

\(\Leftrightarrow x\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow x\left(x^2+x+2x+2\right)=0\)

\(\Leftrightarrow x\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+1=0\end{matrix}\right.\)            \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy phương trình (1) có nghiệm \(x=0;x=-2;x=-1\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+1+a\right)=0\left(2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Leftrightarrow x=-1\\x^2+2x+1+a=0\end{matrix}\right.\)

\(\Rightarrow x=-1\) là (1) nghiệm của phương trình (2)

Đặt \(F\left(x\right)=\left(x+1\right)\left(x^2+2x+1+a\right)\)

Có phương trình (1) và (2) có nghiệm chung là =1

Để (1) và (2) có 1 nghiệm chung duy nhất 

Thì \(\left\{{}\begin{matrix}F\left(0\right)\ne0\\F\left(-2\right)\ne0\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}1.\left(1+a\right)\ne0\\\left(-2+1\right)\left(4-4+1+a\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\-\left(a+1\right)\ne0\end{matrix}\right.\)            \(\Leftrightarrow\left\{{}\begin{matrix}a\ne-1\\a\ne-1\end{matrix}\right.\)

-Chúc bạn học tốt-

Đinh Phương Linh
Xem chi tiết
©ⓢ丶κεη春╰‿╯
24 tháng 2 2018 lúc 17:27

a) ax^2 + bx + c = 0 

Để phương trình thỏa mãn điều kiện có 2 nghiệm dương phân biệt. 

∆ > 0 
=> b^2 - 4ac > 0 

x1 + x2 = -b/a > 0 
=> b và a trái dấu 

x1.x2 = c/a > 0 
=> c và a cùng dấu 

Từ đó ta xét phương trình cx^2 + bx^2 + a = 0 

∆ = b^2 - 4ac >0 

x3 + x4 = -b/c, vì a và c cùng dấu mà b và a trái dấu nên b và c trái dấu , vì vậy -b/c >0 

x3.x4 = a/c, vì a và c cùng dấu nên a/c > 0 

=> phương trình cx^2 + cx + a có 2 nghiệm dương phân biệt x3 và x4 

Vậy nếu phương trình ax^2 + bx + c = 0 có 2 nghiệm dương phân biệt thì phương trình cx^2 + bx + a = 0 cũng có 2 nghiệm dương phân biệt. 

b) Ta có, vì x1, x2, x3, x4 không âm, dùng cô si. 

x1 + x2 ≥ 2√( x1.x2 ) 
x3 + x4 ≥ 2√( x3x4 ) 

=> x1 + x2 + x3 + x4 ≥ 2[ √( x1.x2 ) + √( x3x4 ) ] (#) 

Tiếp tục côsi cho 2 số không âm ta có 

√( x1.x2 ) + √( x3x4 ) ≥ 2√[√( x1.x2 )( x3.x4 ) ] (##) 

Theo a ta có 

x1.x2 = c/a 
x3.x4 = a/c 

=> ( x1.x2 )( x3.x4 ) = 1 

=> 2√[√( x1.x2 )( x3.x4 ) ] = 2 

Từ (#) và (##) ta có đúng k bn

Hoàng Minh Tiến
Xem chi tiết
fairy
Xem chi tiết
alibaba nguyễn
2 tháng 7 2017 lúc 10:25

Gọi m là nghiệm chung của 2 phương trình thì ta có:

\(\hept{\begin{cases}m^2+am+6=0\\m^2+bm+12=0\end{cases}}\)

\(\Rightarrow2m^2+\left(a+b\right)m+18=0\)

Để phương trình có nghiệm thì

\(\Delta=\left(a+b\right)^2-144\ge0\)

\(\Leftrightarrow\left|a+b\right|\ge12\)

Ta lại có:

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)

Tới đây thì đơn giản rồi nên b tự làm nhé.

alibaba nguyễn
1 tháng 7 2017 lúc 22:51

m ở đâu ra.