cho a>1,b>1.Chung minh rang :
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)
Cho a, b, c > 1. Chứng minh:
a) \(\dfrac{a^2}{a-1}+\dfrac{b^2}{b-1}\ge8\)
b) \(\dfrac{a}{\sqrt{b}-1}+\dfrac{b}{\sqrt{c}-1}+\dfrac{c}{\sqrt{a}-1}\ge12\)
a) Áp dụng bất đẳng thức Cauchy Shwarz dạng Engel, ta có:
\(A=\dfrac{x^2}{x-1}+\dfrac{y^2}{y-1}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(x+y=a\left(a>0\right)\)
\(\Rightarrow A\ge\dfrac{a^2}{a-2}\)
\(=\dfrac{8\left(a-2\right)+\left(a^2-8a+16\right)}{a-2}\)
\(=8+\dfrac{\left(a-4\right)^2}{a-2}\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
b) Áp dụng bất đẳng thức Cauchy Shwarz dạng Engel, ta có:
\(A=\dfrac{x}{\sqrt{y}-1}+\dfrac{y}{\sqrt{z}-1}+\dfrac{z}{\sqrt{x}-1}\)
\(\ge\dfrac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{\sqrt{x}+\sqrt{y}+\sqrt{z}-3}\)
Đặt \(\sqrt{x}+\sqrt{y}+\sqrt{z}=a\left(a>0\right)\)
\(\Rightarrow A\ge\dfrac{a^2}{a-3}\)
\(=\dfrac{12\left(a-3\right)+\left(a^2-12a+36\right)}{a-3}\)
\(=12+\dfrac{\left(a-6\right)^2}{a-3}\ge12\)
Dấu "=" xảy ra khi x = y = z = 2
cho a,b,c la cac so khong am . chung minh rang :
\(\dfrac{1+a+b}{2}\ge\dfrac{1+a+b+ab}{2+a+b}\)
\(\dfrac{1+a+b}{2}\ge\dfrac{1+a+b+ab}{2+a+b}\)
\(\Leftrightarrow\left(1+a+b\right)\left(2+a+b\right)\ge2\left(1+a+b+ab\right)\)
\(\Leftrightarrow2+a+b+2a+a^2+ab+2b+ab+b^2\ge2+2a+2b+2ab\)
\(\Leftrightarrow a^2+b^2+2ab+3a+3b+2\ge2ab+2a+2b+2\)
\(\Leftrightarrow a^2+b^2+a+b\ge0\)
Chứng minh BĐT: \(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\forall a,b,c\ne0\)
Lời giải
\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)
\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)
\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)
\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)
\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)
\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm
Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem
Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé
bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2
Ta sẽ giả sử
\(a^2+\dfrac{1}{a^2}\ge2\)(2)
\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)
BĐT (2) đúng suy ra BĐT (1) đúng
Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)
CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)
\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)
Nhân vế theo vế của (*) , (**) , (***) ta được
\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 1
a,b,c>0 nó là đề khác cái đề này a,b,c khác 0 Phan Cả Phát
Lời giải phải đúng với đề
Có thể cái đề này sai so với đề khác (trên mạng hoặc ở đâu đó, cái đó không quan trọng và không nên quan tâm)
p/s: Nội Hàm cái đề này không sai --> chẳng lý do gì lại sửa đề cả
Cho a, b >1. Chứng minh: \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\) .
P/S: Giải thích vì sao dấu "=" xảy ra khi a=b=2
Có: a>1, b>1
=> a - 1> 0; b -1 >0
Áp dụng bđt Cauchy Schwarz dạng Engel có:
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge\dfrac{\left(a+b\right)^2}{\left(b-1+a-1\right)}=\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\)
Ta cần cm: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)
Có: \(\dfrac{\left(a+b\right)^2}{\left(a+b-2\right)}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b\right)-16\)
\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+16\ge0\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) (luôn đúng)
=> Đpcm
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=4\end{matrix}\right.\)=> a = b = 2
Nay t rảnh nè :D
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)
\(\Leftrightarrow\dfrac{a^2}{b-1}-4+\dfrac{b^2}{a-1}-4\ge0\)
\(\Leftrightarrow\dfrac{a^2-4b+4}{b-1}+\dfrac{b^2-4a+4}{a-1}\ge0\)
\(a-1;b-1>0\Leftrightarrow a^2-4b+4+b^2-4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=2\)
p/s: T ủng hộ cách mới,à ko,lm cách mới phá m cho vui
Cho a,b dương. CMR \(\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge8\)
\(\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(=\left(a+b\right)\left(a+b\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\ge2\sqrt{ab}.2\sqrt{ab}+2\sqrt{\dfrac{1}{ab}}.2\sqrt{\dfrac{1}{ab}}\)
\(=4ab+\dfrac{4}{ab}\)
\(=4\left(ab+\dfrac{1}{ab}\right)\ge4.2=8\)(\(a;b>0\))
1. Chứng minh:
\(4-3x+\dfrac{9}{2-3x}\ge8,\forall x< \dfrac{2}{3}\)
2. Cho: a, b, c, d >0 và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\ge3\)
Chứng minh rằng: \(abcd\le\dfrac{1}{81}\)
3. Chứng minh rằng: \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2,\forall a,b\ge0\)
2.
Từ giả thiết, ta có :
\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
Tương tự, ta cũng có :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :
\(abcd\le\frac{1}{81}\left(đpcm\right)\)
2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)
\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)
Tương tự :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)
Từ đó suy ra:
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)
\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)
Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)
3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)
Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được
\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)
Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)
1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)
Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:
\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)
\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)
\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)
Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)
3. Đặt \(\hept{\begin{cases}\sqrt{a}=x\\\sqrt{b}=y\end{cases}}\)
Viết lại bđt cần chứng minh:
\((x+y)^8\ge64x^2y^2(x^2+y^2)^2\)
\(\Leftrightarrow(x+y)^4\ge8xy(x^2+y^2)\)
\(\Leftrightarrow x^4+y^4+4x^2y^3+4x^3y^2+6x^2y^2\ge8x^3y^2+8x^2y^3\)
\(\Leftrightarrow x^4+y^4-4x^2y^3-4x^3y^2+6x^2y^2\ge0\)
\(\Leftrightarrow(x-y)^4\ge0\)
BĐT đã được chứng minh
cho a,b,c>0 thỏa mãn a+b+c=1
cmr: \(\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)\ge8\)
\(a+b+c=1=>\left\{{}\begin{matrix}1-a=b+c\\1-b=a+c\\1-c=a+b\\\end{matrix}\right.\)
\(=>A=\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\)
bbđt AM-GM
\(=>A\ge\dfrac{2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}}{abc}=\dfrac{8abc}{abc}=8\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
Đặt vế trái BĐT cần chứng minh là P
Ta có:
\(P=\left(\dfrac{a+b+c}{a}-1\right)\left(\dfrac{a+b+c}{b}-1\right)\left(\dfrac{a+b+c}{c}-1\right)\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho các số thực dương a,b,c thỏa mãn \(ac\ge12,bc\ge8\). Tìm giá trị nhỏ nhất (nếu có) của biểu thức:
\(D=a+b+c+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+\dfrac{8}{abc}\)
Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)
Đơn giản là kiên nhẫn tính toán và tách biểu thức:
\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)
Sau đó Cô-si cho từng ngoặc là được
1: Cho x,y,z>0. CMR: \(\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\)
2: Cho 0<x<\(\dfrac{1}{2}\). CMR: \(\dfrac{1}{x}+\dfrac{2}{1+2x}\ge8\\\)
3: Cho x,y>0 và x+y=1. CMR:
a)\(\dfrac{1}{xy}+\dfrac{2}{x^2+y^2}\ge8\)
b)\(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}\ge6\\ \)
4: CM các bđt sau: a) \(x^3+4x+1>3x^2\)
b)\(x^4-x+\dfrac{1}{2}>0\)
5: Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:
a)\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
b)\(\dfrac{1}{a+b},\dfrac{1}{b+c},\dfrac{1}{c+a}\)là 3 cạnh của 1 tam giác(cần CM theo bđt tam giác)
6: Cho a,b,c,d>0 và abcd=1. CMR:
\(a^2+b^2+c^2+d^2+ab+cd\ge6\)
Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)
Bài 5:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ac+bc-c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)
Theo hệ quả của BĐT AM-GM ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}\) \((1)\)
Lại có:
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}\) \((2)\)
Từ \((1),(2)\Rightarrow \text{VT}\geq 3\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
b) Để CM \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) ta cần chỉ ra:
\(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{c+a}\), \(\frac{1}{a+b}+\frac{1}{c+a}>\frac{1}{b+c},\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b}\)
Xét hiệu \(\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a}=\frac{2b+a+c}{(a+b)(b+c)}-\frac{1}{a+c}=\frac{b(a+c-b)+a^2+c^2}{(a+b)(b+c)(c+a)}\)
Vì \(a,b,c\) là độ dài ba cạnh tam giác nên hiệu trên luôn lớn hơn $0$
Do đó \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Hoàn toàn tương tự với các hiệu còn lại, ta thu được đpcm.