Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
piojoi
Xem chi tiết
Gấuu
9 tháng 8 2023 lúc 21:15

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}+1=\dfrac{b}{a+c}+1=\dfrac{c}{a+b}+1\)

\(\Rightarrow\dfrac{a+b+c}{b+c}=\dfrac{a+b+c}{a+c}=\dfrac{a+b+c}{a+b}\)

\(\Rightarrow b+c=a+c=b+a\)

\(\Rightarrow a=b=c\)

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a}{a+a}=\dfrac{1}{2}\)

Liễu Lê thị
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 14:15

\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)

TH1: \(a+b+c+d=0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)

TH2: \(a+b+c+d\ne0\)

\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

giahan
Xem chi tiết
Đinh Hà Linh
Xem chi tiết
Minh Hiếu
4 tháng 1 2022 lúc 5:45

Ta có:

\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)

⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)

    \(=\dfrac{a+b+c+2d}{d}-1\)

⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

Nếu a+b+c+d=0

⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)

Thay vào M, ta có:

\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)

Nếu a+b+c+d ≠0

⇒ \(a=b=c=d\)

Thay vào M, ta có

\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)

Nguyễn Tân Vương
4 tháng 1 2022 lúc 8:34

\(\text{Cùng trừ mỗi tỉ số trên 1 đơn vị ta được:}\)

\(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\) \(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)

\(\text{Từ đây ta suy ra 2 trường hợp:}\)

\(\text{Trường hợp 1:}\)

\(\text{Nếu }a+b+c+d\notin0\Rightarrow a=b=c=d\)

\(\Rightarrow M=1+1+1+1=1.4=4\)

\(\text{Trường hợp 2:}\)

\(\text{Nếu }a+b+c+d=0\text{ thì:}\)

\(a+b=-\left(c+d\right);b+c=-\left(d+a\right)\)

\(c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)

\(\text{Do đó }M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Foxbi
Xem chi tiết
Lấp La Lấp Lánh
22 tháng 11 2021 lúc 20:31

Áp dụng t/c dtsbn:

\(\dfrac{1}{a+b}=\dfrac{2}{b+c}=\dfrac{3}{c+a}=\dfrac{1+2+3}{2\left(a+b+c\right)}=\dfrac{6}{2\left(a+b+c\right)}=\dfrac{3}{a+b+c}\)

\(\Rightarrow\left\{{}\begin{matrix}3a+3b=a+b+c\\3b+3c=2a+2b+2c\\3a+3c=3a+3b+3c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c=2a\\b=0\end{matrix}\right.\)

\(Q=\dfrac{a+2021b+c}{a+2022b+c}=\dfrac{a+2a}{a+2a}=1\)

Quynh Truong
Xem chi tiết
❤️ Jackson Paker ❤️
3 tháng 1 2021 lúc 14:15

sửa lại đề bài nhé 

tìm x ,biết 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)

+ nếu a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)

nếu a+b+c \(\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

nếu nếu a+b+c \(\ne0\)

thì x=\(\dfrac{1}{2}\)

nếu nếu a+b+c =0

thì x= -1

x là giá trị của mỗi tỉ số nhé

\(\ne0\)\(\ne0\)

 

Nguyễn Thị Hằng Nga
Xem chi tiết
Đinh Hương Linh
Xem chi tiết
ILoveMath
7 tháng 12 2021 lúc 16:31

Áp dụng t/c dtsbn ta có:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2b+2c+2a}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\dfrac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b=3a-c\)\(\dfrac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c=3b-a\)

\(\dfrac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a=3c-b\)

\(P=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{2a.2b.2c}=\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{8abc}\)