Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quản đức phú
Xem chi tiết
yêu húa
Xem chi tiết
Nguyễn Linh Chi
26 tháng 6 2020 lúc 7:27

\(A=\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ba}+\frac{ab}{ac+bc}\)

Đặt: \(ab=x;bc=y;ac=z\)=> xyz = 1; x,y,z>0

\(A=\frac{y}{x+z}+\frac{z}{y+x}+\frac{x}{z+y}=\frac{y^2}{xy+yz}+\frac{z^2}{yz+xz}+\frac{x^2}{zx+xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+xz\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z= 1 => a = b = c = 1

Vậy gtnn của A = 3/2 tại  a = b = c = 1

Khách vãng lai đã xóa
Nguyễn Đặng Bảo Trâm
Xem chi tiết
Nguyễn Hoàng Hải
Xem chi tiết
Nguyễn Đăng Nhân
23 tháng 2 2022 lúc 17:24

Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.

Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:

\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)

Do đó ta được:

\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)

\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)

\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)

Do đó ta được:

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)

Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).

Khách vãng lai đã xóa
Hương Vòng Ngọc
Xem chi tiết
Thắng Nguyễn
22 tháng 12 2017 lúc 18:45

thay 1=ab+bc+ca vào M phân tích và rút gọn

๖Fly༉Donutღღ
22 tháng 12 2017 lúc 21:38

bác giải ra luôn đi 

Vongola Famiglia
22 tháng 12 2017 lúc 21:44

cháu càng nói thế bác càng k giải nhé :v

Nguyễn Khắc Quang
Xem chi tiết
Phạm Thành Đông
21 tháng 3 2021 lúc 10:48

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

Khách vãng lai đã xóa
Nguyễn Mai
Xem chi tiết
Nguyễn Linh Chi
20 tháng 6 2020 lúc 15:16

\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge1\)

<=> \(\left(1+b\right)^2\left(1+c\right)^2+\left(1+a\right)^2\left(1+b\right)^2+\left(1+a\right)\left(1+c\right)^2\)

\(+2\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2\)

<=> \(a^2+b^2+c^2\ge3\)đúng vì \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Khách vãng lai đã xóa
Vũ Minh Anh
Xem chi tiết
Đoàn Đức Hà
9 tháng 3 2021 lúc 17:24

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\Rightarrow x+y+z=0\).

\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(=4+2.\frac{x+y+z}{xyz}=4+0=4\).

\(\Leftrightarrow A=\pm2\).

Khách vãng lai đã xóa
Nguyễn Bá Huy h
Xem chi tiết
Edogawa Conan
9 tháng 6 2021 lúc 23:32

Ta có: \(\frac{a^2+1}{c^2a^2}=\frac{1}{c^2}+\frac{1}{a^2c^2}=\frac{1}{c^2}+b^2\)

CMTT: \(\frac{b^2+1}{a^2b^2}=\frac{1}{a^2}+c^2\)

\(\frac{c^2+1}{b^2c^2}=\frac{1}{b^2}+a^2\)

=> \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+a^2+b^2+c^2\)

Áp dụng bđt: x2 + y2 + z2 \(\ge\)xy + yz + xz

CM đúng: <=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge\)0 (luôn đúng với mọi x,y, z)

Do đó: \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+ab+bc+ac=a+b+c+ab+bc+ac\)

\(=a\left(b+1\right)+b\left(c+1\right)+c\left(a+1\right)\)(đpcm)

Khách vãng lai đã xóa