Tìm GTLN của biểu thức:
A=|x|\(\sqrt{9-x^2}\)
Mọi người giúp mk nhé!
Mong mọi người giúp mình bài này, mình cảm ơn trước ạ.
-Tìm GTLN và GTNN của biểu thức \(A=\sqrt{2x-3}+2\sqrt{3-x}\).
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
Cho biểu thức: M=\(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a)rút gọn M
b)tìm gtln của M
giúp mk vs nhé mk cần gấp
ĐK: x > 0
a) Rút gọn M
M = \(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
= \(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
b) \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> M \(\le\)1/3
=> GTLN của M =1/ 3 khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\) thỏa mãn
Vậy max M = 1/3 tại x = 1
bn giải thíchcách làm câu b hôk mk vs mk ko hiểu
Giải thích lại nhé!
( Bạn có thể nói rõ là bạn không hiểu ở dòng nào?)
\(M=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
=> \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)+1\)
mà \(\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}=2\) ( theo cô - si )
=> \(\frac{1}{M}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)
=> \(M\le\frac{1}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy GTLN của M là 1/3 đạt tại x = 1
cho biểu thức A=2015/9-x với giá trị nguyên nào của x thì a có GTLN ? tìm GTLN đó
giúp mình với mọi người !!!!!
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Cho biểu thức:
f(x) = \(\sqrt{3-x}+\sqrt{2+x}\)
a) Tìm các giá trị của x để biểu thức f(x) xác định.
b) Tìm GTLN và GTNN của biểu thức f(x)
Mọi người ơi giải giúp mình bài này với ạ. Làm chi tiết 1 chút giúp mình nha.
Tìm GTLN , GTNN của biểu thức sau:
a, A= \(13-\sqrt{2x+3}\)
b, B= \(83+5.\sqrt{x^2+25}\)
c, C= \(57-\sqrt{x^2-36}\)
Nhờ mọi người giúp đỡ, mk đang cần gấp
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(B=\frac{xy}{2x+y}+\frac{3yz}{2y+z}+\frac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!
À mà để phải là tìm Max mới đúng chứ nhỉ?
Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:
"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x=y=z=1/3
Vậy A max = 3/4 khi x=y=z=1/3
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(b=\dfrac{xy}{2x+y}+\dfrac{3yz}{2y+z}+\dfrac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi