Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 6 2021 lúc 21:46

Đk:\(x\ne0;x\ge-\dfrac{1}{3}\)

Pt \(\Leftrightarrow12x^2-3x-1=4x\sqrt{3x+1}\)

\(\Leftrightarrow16x^2=4x^2+4x\sqrt{3x+1}+3x+1\)

\(\Leftrightarrow16x^2=\left(2x+\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=2x+\sqrt{3x+1}\\4x=-\left(2x+\sqrt{3x+1}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\sqrt{3x+1}\left(1\right)\\6x=-\sqrt{3x+1}\left(2\right)\end{matrix}\right.\)

TH1 \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(4x+1\right)=0\end{matrix}\right.\)\(\Rightarrow x=1\) (thỏa)

TH2\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\36x^2=3x+1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{17}}{24}\\x=\dfrac{1-\sqrt{17}}{24}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{17}}{24}\)(tm)

Vậy...

Akai Haruma
19 tháng 6 2021 lúc 21:45

Lời giải:
ĐKXĐ: $x\ge \frac{-1}{3}; x\neq 0$

PT \(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\sqrt{3x+1}-2\)

\(\Leftrightarrow 3(x-1)+\frac{x-1}{4x}=\frac{3(x-1)}{\sqrt{3x+1}+2}\)

\(\Leftrightarrow (x-1)(3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2})=0\)

Nếu $x-1=0\Leftrightarrow x=1$ (tm)

Nếu $3+\frac{1}{4x}-\frac{3}{\sqrt{3x+1}+2}=0$

$\Leftrightarrow 12x\sqrt{3x+1}+12x+\sqrt{3x+1}+2=0$

$\Leftrightarrow \sqrt{3x+1}(12x+1)=-(12x+2)$

Từ đây suy ra $x\leq \frac{-1}{6}$

Bình phương 2 vế:

$(3x+1)(12x+1)^2=[(12x+1)+1]^2$

$\Leftrightarrow 3x(12x+1)^2=2(12x+1)+1$

$\Leftrightarrow 144x^3+24x^2-7x-1=0$

$\Leftrightarrow (4x+1)(36x^2-3x-1)=0$

Vì $x\leq \frac{-1}{6}$ nên $x=\frac{1-\sqrt{17}}{24}$

 

Akai Haruma
19 tháng 6 2021 lúc 22:00

Cách 2:

ĐKXĐ:...........

PT $\Leftrightarrow 12x^2-3x-1=4x\sqrt{3x+1}$

$\Leftrightarrow \frac{3}{4}(4x)^2-(3x+1)=4x\sqrt{3x+1}$

Đặt $4x=a; \sqrt{3x+1}=b$ thì pt trở thành:

$\frac{3}{4}a^2-b^2=ab$

$\Leftrightarrow 3a^2-4b^2-4ab=0$

$\Leftrightarrow (a-2b)(3a+2b)=0$

Nếu $a-2b=0\Leftrightarrow 4x=2\sqrt{3x+1}$

$\Rightarrow 4x^2=3x+1$ và $x\geq 0$

$\Rightarrow x=1$ (chọn) hoặc $x=-\frac{1}{4}$ (loại do $x\geq 0$)

Nếu $3a+2b=0$

$\Leftrightarrow 12x=-2\sqrt{3x+1}$

Bình phương lên ta cũng thu được $x=\frac{1-\sqrt{17}}{24}$

Nguyễn Thị Bích Thuỳ
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Thiên Yết
Xem chi tiết
Nguyễn An
Xem chi tiết
Yết Thiên
Xem chi tiết
le thai
22 tháng 10 2021 lúc 20:07

a)√x−2+12√4x−8=√9x−18−2

=>√x−2+12√4(x−2)=√9(x−2)−2

=>√x−2+12√22(x−2)=√32(x−2)−2

=>√x−2+12.2√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)=3√(x−2)−2

=>√x−2+24√(x−2)-3√(x−2)=-2

=>√x−2(1+24-3)=-2

=>22√x−2=-2

=>√x−2=-2/22

=>√x−2=-1/11

=>x−2=1/121

=>x=1/121+2=243/121

b)√(3x−1)2=5

=>|3x−1|=5

=>3x−1=5 hoặc 3x−1=-5

=>3x=6 hoặc 3x=-4

=>x=2 hoặc x=-4/3

 

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:26

c.

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)

\(\Leftrightarrow x+4-2\sqrt[]{\left(\dfrac{x+2}{x-1}\right)^2\left(\dfrac{x-1}{x+2}\right)}=0\)

\(\Leftrightarrow x+4-2\sqrt[]{\dfrac{x+2}{x-1}}=0\)

\(\Leftrightarrow x+4=2\sqrt[]{\dfrac{x+2}{x-1}}\) (\(x\ge-4\))

\(\Leftrightarrow x^2+8x+16=\dfrac{4\left(x+2\right)}{x-1}\)

\(\Rightarrow x^3+7x^2+4x-24=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+4x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2+2\sqrt{3}\\x=-2-2\sqrt{3}\left(loại\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:16

a.

\(\Leftrightarrow2x^2-11x+21=3\sqrt[3]{4\left(x-1\right)}\)

Do \(2x^2-11x+21=2\left(x-\dfrac{11}{4}\right)^2+\dfrac{47}{8}>0\Rightarrow3\sqrt[3]{4\left(x-1\right)}>0\Rightarrow x-1>0\)

Ta có:

\(VT=2x^2-11x+21-3\sqrt[3]{4x-4}=2\left(x^2-6x+9\right)+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(=2\left(x-3\right)^2+x+3-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge x+3-3\sqrt[3]{4\left(x-1\right)}=\left(x-1\right)+2+2-3\sqrt[3]{4\left(x-1\right)}\)

\(\Rightarrow VT\ge3\sqrt[3]{\left(x-1\right).2.2}-3\sqrt[3]{4\left(x-1\right)}=0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x-1=2\\\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:21

b.

ĐKXD: \(x\ge-1\)

Phương trình: \(2\left(x+1\right)-\left(3x-2\right)\sqrt[]{x+1}+x^2-x=0\)

Đặt \(\sqrt[]{x+1}=t\ge0\)

\(\Rightarrow2t^2-\left(3x-2\right)t+x^2-x=0\)

\(\Delta=\left(3x-2\right)^2-8\left(x^2-x\right)=\left(x-2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x-2+x-2}{4}=x-1\\t=\dfrac{3x-2-x+2}{4}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt[]{x+1}=x-1\left(x\ge1\right)\\\sqrt[]{x+1}=\dfrac{x}{2}\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=x^2-2x+1\left(x\ge1\right)\\x+1=\dfrac{x^2}{4}\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2+2\sqrt[]{2}\end{matrix}\right.\)

dinh huong
Xem chi tiết
Trần Ngọc Thiên Kim
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Khách vãng lai đã xóa
Trần Bảo Minh
11 tháng 1 2022 lúc 20:33

Hummmm

Khách vãng lai đã xóa
Hà Nguyễn Bảo Trâm
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Khách vãng lai đã xóa
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 7:05

a.

Kiểm tra lại đề bài, đề bài không đúng

b.

ĐKXĐ: \(x\ge0\)

\(1+3\sqrt{x}=4x+\sqrt{x+2}\)

\(\Rightarrow4x-1-\left(3\sqrt{x}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow4x-1-\dfrac{2\left(4x-1\right)}{3\sqrt{x}+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(4x-1\right)\left(1-\dfrac{2}{3\sqrt{x}+\sqrt{x+2}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\Rightarrow x...\\3\sqrt{x}+\sqrt{x+2}=2\left(1\right)\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow10x+2+6\sqrt{x^2+2x}=4\)

\(\Leftrightarrow3\sqrt{x^2+2x}=1-5x\) (\(x\le\dfrac{1}{5}\))

\(\Leftrightarrow16x^2-28x+1=0\Rightarrow x=\dfrac{7-3\sqrt{5}}{8}\)

Lê Cao Cường
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 8 2021 lúc 8:41

\(\sqrt{x+1}+1=4x^2+\sqrt{3x}\left(x\ge0\right)\\ \Leftrightarrow\sqrt{x+1}+\sqrt{3x}=4x^2-1\\ \Leftrightarrow\dfrac{1-2x}{\sqrt{x+1}-\sqrt{3x}}=\left(2x-1\right)\left(2x+1\right)\\ \Leftrightarrow\left(1-2x\right)\left(\dfrac{1}{\sqrt{x+1}-\sqrt{3x}}+2x+1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\)

Vì biểu thức trong ngoặc còn lại lớn hơn 0 với mọi \(x\ge0\) bằng cách khảo sát hàm số ta sẽ nhận ra điều này.