Bài 1 tìm SNT p sao cho
a) p+10 và p+14 là SNT
b) p+2;p+4;p+6;p+8 là SNT
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,P+14 là SNT
a) Trường hợp 1: P=3
\(\Leftrightarrow P^2+44=3^2+44=53\) là số nguyên tố
Trường hợp 2: P>3
\(\Leftrightarrow\)P=3k+1 hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+1\right)^2+44=9k^2+6k+1+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+2k+15\right)⋮3\)(loại)
Với P=3k+2(\(k\in N\))
\(\Leftrightarrow P^2+44=\left(3k+2\right)^2+44=9k^2+12k+4+44\)
\(\Leftrightarrow P^2+44=3\left(3k^2+4k+16\right)⋮3\)(loại)
Vậy: P=3
b) Với P=3 thì P+10=13 và P+14=17 đều là số nguyên tố
Với P>3 thì \(P=3k+1\) hoặc P=3k+2(\(k\in N\))
Với P=3k+1(\(k\in N\)) thì P+14=3k+1+14=3(k+5) không là số nguyên tố
=> Loại
Với P=3k+2(\(k\in N\)) thì P+10=3k+2+10=3(k+4) không là số nguyên tố
=> Loại
Vậy: P=3
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,-+14 là SNT
Bài 2,CMR:n^2-1 và n^2+1 không thể đồng thời là SNT
(n>2,n không chia hết cho 3)
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Bài 4: CMR:Nếu P là SNT>3 thì (P-1)(P+1) chia hết cho 24
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
bài 1: tìm SNT p sao cho :
a) p, p+2, p+4 là các SNT
b) p+10, p=14 là các SNT
c) p+2, p+6, p+14 là các SNT
bài 2: tìm 2 STN mà tổng và tích của nó là các SNT
bài 3:tìm n thuộc N sao cho p=(n-20)x(n2+n-1) là một SNT
Lưu ý : STN =số tự nhiên
SNT=số nguyên tố
cẩn thận nha
1)CMR 2n+1 và 2n(n+1) là 2 số nguyên tố cùng nhau.
2)Tìm SNT P sao cho P chia cho 42 có số dư r là một hợp số.Tìm số dư r.
3)Tìm SNT P sao cho các số sau cũng là SNT:
a)P+2 và P+10
b)P+10 và P+20
c)P+2;P+6;P+8;P+12;P+14;
Tìm snt p sao cho p+10 và p+14 cũng là snt
CẦN GẤP
Nếu p=2 thì p+10=2+10=12 là hợp số (loại)
Nếu p=3 thì p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố (thỏa mãn)
Nếu p>3 thì p có dạng p=3k+1 hoặc p=3k+2 (k thuộc N*)
Với p=3k+1 thì p+14= 3k+1+14= 3k+15= 3(k+5) chia hết cho 3 => p+14 là hợp số (loại)
Với p=3k+2 thì p+10= 3k+2+10= 3k+12= 3(k+4) chia hết cho 3 => p+10 là hợp số (loại)
Vậy p=3
xet 3 truong hop khi p chia 3 du 0,1,2 . ban thay vao la 3k,3k+1,3k+2 vao p la ra p =3
bye
TÌM P là SNT sao cho P + 10 ;P + 14 cũng là SNT.
với p=2 thì p+10=12 p+14=16 (loại)
với p=3 thì p+10=13 p+14=17 chọn vì là số nguyên tố
với p>3 thì p có dạng 3k+1 3k+2
với p có dạng 3k+1
=>p+14=3k+1+14=3k+15 chia hết cho 3( loại)
với p có dạng 3k+2
=>p+10=3k+2+10=3k+12 chia hết cho3( loại)
=> p=3
tick cho mình
Câu 5: Tìm số nguyên tố P sao cho:
a/ P+2 và P+4 là SNT.
b/ P+4 và P+14 là SNT
tìm SNT p sao cho p+2 và p+10 là SNT
Nếu p = 2 ⇒ p+ 2 = 4 ( loại)
Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)
p + 10 = 3 + 10 = 13 ( thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)
Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài
Tìm STN n sao cho n,n+10,n+14 là SNT