Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Yuki
Xem chi tiết
Nguyễn Đình Dũng
23 tháng 10 2016 lúc 21:20

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

Dương Thị Khánh Huyền
Xem chi tiết
Phùng Thị Minh Nguyệt
Xem chi tiết
Bỉ ngạn hoa
Xem chi tiết
 .
6 tháng 9 2019 lúc 19:21

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

Đức Vũ Việt
Xem chi tiết
Đức Vũ Việt
Xem chi tiết
Ngô Văn Tuyên
9 tháng 10 2015 lúc 10:15

A=1+2+22+…+2100

2A=2(1+2+22+…+2100)

2A=2+22+…+2101

2A-A = A = 2+22+…+2101-(1+2+22+…+2100)

            A = 2+22+…+2101-1-2-22-…-2100

            A = (2-2)+(22-22)+…+(2100-2100)+2101-1

            A = 0+0+…+0+2101-1

            A = 2101-1

B=3-32+33-34+…+299-3100

3B = 3(3-32+33-34+…+299-3100)

3B = 32-33+34-…-299+3100-3101

3B+B = 4B = 3-32+33-34+…+299-3100

         4B =(3-32+33-34+…+299-3100)+(32-33+34-…-299+3100-3101)

         4B =3-32+33-34+…+299-3100+32-33+34-…-299+3100-3101

         4B =3+(32-32)+(33-33)+(34-34)+…+(299-299)+(3100-3100)-3101

        4B =3+0+0+0+....+0-3101

         4B =3-3101

           B = (3-3101)/4

Đặng Kiều Trang
Xem chi tiết
Không Tên
29 tháng 7 2018 lúc 10:08

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)

\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)

\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)

Ngô Nam Duy
Xem chi tiết
Trần Anh Trang
Xem chi tiết
Nhung Mun
3 tháng 10 2017 lúc 20:16

\(A=1+2+2^2+...+2^{100}\)

\(2A=2+2^2+2^3+..,+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

\(B=\)\(3-3^2+3^3-...-3^{100}\)

Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 1:10

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)