cho x,y>0.tim gtnn cua D=x/y +y/x +xy/(x^2+xy+y^2)
cho hai so x,y > 0(xy>=1) . tim gtnn cua Q=(x-1/x^2)(y-1y^2) + xy
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
cho x,y>0 thay doi . tim GTNN cua
S=(X+Y)2/XY + (X+Y)2/(X2+Y2)
\(S=\frac{\left(x+y\right)^2}{xy}+\frac{\left(x+y\right)^2}{x^2+y^2}=\frac{x^2+y^2+2xy}{xy}+\frac{x^2+y^2+2xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{2xy}{x^2+y^2}+3\)
\(=\frac{x^2+y^2}{2xy}+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+3\)
\(\ge2\sqrt{\frac{x^2+y^2}{2xy}.\frac{2xy}{x^2+y^2}}+\frac{2xy}{2xy}+3=6\)
Dấu "=" xảy ra khi x = y.
Vậy GTNN của S là 6.
cho x,y thuoc R khac 0 thoa man 2x^2 + y^2/4 +1/x^2 = 4. tim gtnn gtln cua A= 2008+xy
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
Tim GTNN cua x^2+y^2+2/xy voi x, y cung dau
cho x,y>0 va \(x+y\le1.\)
tim GTNN cua bieu thuc \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2xy}\ge\dfrac{4}{1^2}+\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}\ge4+2=6\)
Dấu "=" xảy ra <=> x = y = 0,5
cho cac so thuc x,y thoa man x^2+y^2-xy-9 tim GTNN cua P= x^2+y^2
help meeeeeeee
cho cac so thuc x,y thoa man x^2+y^2-xy-9 tim GTNN cua P= x^2+y^2
help meeeeeeeeeeee