Cho biểu thức: \(A=2x+\sqrt{x^2-2x+1}\).
a) Rút gọn biểu thức.
b) Tính giá trị của x để A = 1.
Cho biểu thức \(A=\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a. Rút gọn biểu thức A
b, Tính giá trị x để giá trị của biểu thức A =2/3
c. Biểu thức A có giá trị lớn nhất không ? Vì sao ?
Bài 1 Cho biểu thức : A = \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với ( x >0 và x ≠ 1)
a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại .\(x=3+2\sqrt{2}\)
a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
Đk: \(x>0\) và \(x\ne1\)
\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào A ta được:
\(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)
\(=\sqrt{2}+1-1=\sqrt{2}\)
(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))
Cho biểu thức : A= x-1/3x và B= ( x+1/2x-2 + 3x-1/x2 - 1 - x+3/2x+2) : 3/x+1 Với x # 0,x# -1,1.
a)Rút gọn biểu thức B
b)Tính giá trị của biểu thức A khi x thỏa mãn x2 - 2x = 0
c) tìm giá trị của x để B/A đạt giá trị nhỏ nhất .
b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)
(3,0 điểm) Với x > 0 x ne4 , cho hai biểu thức. A = (sqrt(x) + 10)/(sqrt(x)) * vaB = 1/(sqrt(x) + 2) - (sqrt(x))/(sqrt(x) - 2) + (2x - sqrt(x) + 2)/(x - 4) 1 ) Tính giá trị của A khi x = 9 2) Rút gọn biểu thức B 3) Tìm tất cả các giá trị của x để biểu thức P =A.B có giá trị nguyên
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Cho biểu thức A=-2x-6/x^2-2x - 7/3-x +x/x+1. a)tìm điều kiện để biểu thức A có nghĩa và rút gọn biểu thức A. b) tính giá trị của A khi|x-2|=1
Cho biểu thức \(A=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
a, Tìm ĐKXĐ và rút gọn biểu thức A.
b, Tìm các giá trị của x để A < 1.
a) ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\2x\ge2\sqrt{2x-1}\end{cases}}\)\(\Leftrightarrow x\ge\frac{1}{2}\)
A=\(\sqrt{2x-1+1+2\sqrt{2x-1}}\)\(-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}\)\(-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
=\(\sqrt{2x-1}+1-|\sqrt{2x-1}-1|\)
Nếu \(x\ge1\)thì A=\(\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)\)=2.
Nếu \(\frac{1}{2}\le x< 1\)thì A=\(\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)\)=\(2\sqrt{2x-1}\).
b)A<1 thì \(\frac{1}{2}\le x< 1\)và \(2\sqrt{2x-1}< 1\)\(\Leftrightarrow4\left(2x-1\right)< 1\)\(\Leftrightarrow8x-4< 1\)\(\Leftrightarrow x< \frac{5}{8}\)(tm)
Vậy A<1 thì \(\frac{1}{2}\le x< \frac{5}{8}\).
Cho biểu thức :
A= x^2+2x/2x+10 + x−5/x + 50−5x/2x(x+5)
a) Tìm điều kiện của biến x để giá trị của biểu thức được xác định
b) rút gọn biểu thức A
c)Tìm giá trị của x để giá trị của biểu thức bằng 1
d)tính A - x/1-x
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Cho biểu thức A= \(\dfrac{x}{\sqrt{x-1}}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với \(x>0\) và \(x\ne1\).
a) rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x= \(3+2\sqrt{2}\)
Giúp tui.
Cho biểu thức: \(M=x-\dfrac{2x-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x+1}}{x-\sqrt{x}+1}+1\)
a. Rút gọn biểu thức M.
b. Tính giá trị nhỏ nhất của biểu thức M
a:
ĐKXĐ: x>=0; x<>1
Sửa đề: \(M=x-\dfrac{2x-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
\(=x-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)
\(=x-2\sqrt{x}+1+\sqrt{x}+1=x-\sqrt{x}+2\)
b: \(M=x-\sqrt{x}+2\)
\(=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4