Cho tam giác ABC vuông tại A, BC = 12cm; AB= 2/3 AC.
a) Tính AB, AC.
b) Kẻ đường cao AI. Tính BI, AI.
Giúp mình với mọi người ơi, sáng mai mk ik học rồi.
Cho tam giác ABC vuông tại A, AB= 12cm, BC= 20cm. Giải tam giác ABC
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)
Cho tam giác ABC vuông tại A có AC= 12cm, BC=15cm. Giải tam giác ABC?
ΔABC vuông tại A
=>AB^2+AC^2=BC^2
=>AB^2=15^2-12^2=81
=>AB=9cm
Xét ΔABC vuông tại A có sin C=AB/BC=9/15=3/5
nên góc C=37 độ
=>góc B=53 độ
Xét tam giác ABC vuông tại A áp dụng Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}\)
\(\Leftrightarrow AB=\sqrt{15^2-12^2}=9\left(cm\right)\)
Xét tam giác ABC vuông tại A ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{C}\approx37^o\)
Mà: \(\widehat{C}+\widehat{B}=90^o\)
\(\Leftrightarrow\widehat{B}=90^o-37^o=53^o\)
Cho tam giác ABC vuông tại A, góc C=30°, BC=12cm, giải tam giác ABC.
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}+30^0=90^0\)
=>\(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{12}=sin30=\dfrac{1}{2}\)
=>AB=6(cm)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=144-36=108\)
=>\(AC=6\sqrt{3}\left(cm\right)\)
ABC vuông tại A
⇒ ∠B + ∠C = 90⁰
⇒ ∠B = 90⁰ - ∠C
= 90⁰ - 30⁰
= 60⁰
sinB = AC/BC
⇒ AC = BC . sinB
= 12 . sin60⁰
= 6√3 (cm)
sinC = AB/BC
⇒ AB = BC.sinC
= 12.sin30⁰
= 6 (cm)
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 15cm. Diện tích tam giác ABC là :
\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)
bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2
Cho tam giác ABC vuông tại A, biết AB=12cm,BC=20cm. Hãy tính diện tích tam giác ABC
Áp dụng định lí PTG: \(AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot12\cdot16=96\left(cm^2\right)\)
cho tam giác ABC vuông tại A có AB=16cm,AC=12cm. Kẻ AH vuông góc với BC tại H . Gọi S tam ABC là diện tích tam giác ABC 1) tính diện tích tam giác abc 2) tính BC,AH 3)tính BH,CH giúp mình vs ạ
1) Có \(\Delta ABC\) vuông
=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)
2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :
AB2 + AC2 = BC2
=> 162 + 122 = BC2
=> 400 = BC2
=> BC = 20 (cm)
Ta có : S\(\Delta ABC\) = S\(\Delta ABH\) + S\(\Delta ACH\)
=> \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)
=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)
=> \(\dfrac{AH.BC}{2}\) = 96
=> AH = 96 . \(\dfrac{2}{BC}\) = 96 . \(\dfrac{2}{20}\) = 9.6 (cm)
3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :
BH2 = AB2 - AH2
=>BH2 = 162 - 9.62 = 163.84
=> BH = 12.8 (cm)
=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)
Cho tam giác ABC vuông tại A. Giải tam giác ABC, biết:
a) AC = 12cm, AB = 7cm.
b) BC = 20cm. B =35°;
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{193}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)
\(\Leftrightarrow\widehat{B}\simeq60^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Cho tam giác ABC vuông tại A. Biết AB=9cm,BC=12cm. Tính BC
AC = 12 cm bạn nhé
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=15cm\)
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC tại B.
a) CM: Tam giác ABD= Tam giác EBD
b) cho AB = 9cm AC=12cm. Tính BC
a) xét tg ABD vuông tại A và tg EBD vuông tại E có:
BD là cạnh chung
góc ABD = góc DBE ( do BD là đường pg của góc B )
=> tg ABD = tg EBD ( cạnh huyền - góc nhọn )
b) Tam giác ABC vuông tại A có:
BC2 = AC2 + AB2 ( định lý Pytago )
= 122 + 92
= 144 + 81
= 225
=>BC = \(\sqrt{225}=15\)
Vậy BC = 15 cm
ai có câu trả lời giống mình thì h cho mình nhé !!!!!!!!!!!