Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 1 2022 lúc 14:01

\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)

Trân Mai Chân
Xem chi tiết
KING___Sói ca︵²ᵏ⁸🐺
9 tháng 5 2021 lúc 16:50

đề hình như sai

 

Big City Boy
Xem chi tiết
Trần Minh Hoàng
10 tháng 3 2021 lúc 22:37

Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).

Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

Big City Boy
10 tháng 3 2021 lúc 22:32

Với a, b>0 các bn nha

hoàng thị huyền trang
Xem chi tiết
Đinh Đức Hùng
14 tháng 1 2018 lúc 14:53

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

hoàng thị huyền trang
14 tháng 1 2018 lúc 14:58

cảm ơn nhiều nha. chúng ta kết bạn được không?

TÔI KHÔNG BIẾT
14 tháng 1 2018 lúc 15:01

theo bđt bu-nhi-a cốp-xki thì

(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)

còn bạn chưa biết thì

<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3

,<=>a^2xb^4+b^2xa^4>=2a^3xb^3

<=>(axb^2-a^2xb)^2>=0(luôn đúng)

Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Cung Phy Ủy Ngư
Xem chi tiết
Lê Anh Duy
18 tháng 4 2019 lúc 12:08

Sai đề

Trân Vũ
Xem chi tiết
Hung nguyen
20 tháng 4 2017 lúc 9:48

Ta có: \(a^2+\dfrac{1}{4}\ge a\)

Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)

Cộng 3 cái vế theo vế ta được ĐPCM