Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hi nguyễn
Xem chi tiết
Vũ Trọng Nghĩa
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

Trần Thị Vân Anh
Xem chi tiết
Lê Thị Bích Thảo
Xem chi tiết
Akai Haruma
22 tháng 7 2021 lúc 11:24

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

Lil Shroud
Xem chi tiết
Minhmetmoi
3 tháng 2 2022 lúc 15:26

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

Nguyễn Lê Nhật Linh
Xem chi tiết
Hàn Mạc Tử
Xem chi tiết
Trịnh Thị Thúy Vân
19 tháng 9 2018 lúc 21:38

a) Sai đề.

\(\dfrac{a+b}{b^2}\sqrt[]{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\left|a\right|}{\left|a+b\right|}=\left|a\right|\)

Trịnh Thị Thúy Vân
19 tháng 9 2018 lúc 21:42

b) Sai đề.

\(\dfrac{a\sqrt[]{b}+b\sqrt[]{a}}{\sqrt[]{ab}}:\dfrac{1}{\sqrt[]{a}-\sqrt[]{b}}=\dfrac{\sqrt[]{ab}\left(\sqrt[]{a}+\sqrt[]{b}\right)}{\sqrt[]{ab}}.\left(\sqrt[]{a}-\sqrt[]{b}\right)=a-b\)

Trịnh Thị Thúy Vân
19 tháng 9 2018 lúc 21:45

c) \(\left(\dfrac{\sqrt{x}+\sqrt[]{y}}{\sqrt[]{x}-\sqrt[]{y}}-\dfrac{\sqrt[]{x}-\sqrt[]{y}}{\sqrt[]{x}+\sqrt[]{y}}\right):\dfrac{\sqrt[]{xy}}{x-y}\)

\(=\dfrac{\left(\sqrt[]{x}+\sqrt[]{y}\right)^2-\left(\sqrt[]{x}-\sqrt[]{y}\right)^2}{\left(\sqrt[]{x}-\sqrt[]{y}\right)\left(\sqrt[]{x}+\sqrt[]{y}\right)}.\dfrac{x-y}{\sqrt[]{xy}}=\dfrac{4\sqrt[]{xy}}{x-y}.\dfrac{x-y}{\sqrt[]{xy}}=4\)

Lê Trần Ngọc Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:16

Em kéo xuống trang 40, mục số 3:

Một số mẹo nhỏ với Casio.pdf - Google Drive

Big City Boy
Xem chi tiết
gh
Xem chi tiết
I am➻Minh
23 tháng 10 2020 lúc 21:27

 ta có:\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\)

vậy.....

Khách vãng lai đã xóa
Nobi Nobita
23 tháng 10 2020 lúc 21:35

\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right).\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\frac{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=x-y\)( đpcm )

Khách vãng lai đã xóa