Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lunox Butterfly Seraphim
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 21:34

\(\Leftrightarrow\left(2+a^2+b^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow2+2ab+a^2+b^2+ab\left(a^2+b^2\right)\ge2+2a^2+2b^2+2a^2b^2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (luôn đúng với mọi \(a\ge1;b\ge1\))

Trần Minh Hoàng
5 tháng 9 2020 lúc 22:22

Cách khác:

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)\left[b\left(1+a^2\right)-a\left(1+b^2\right)\right]}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) (luôn đúng).

lương thị hạnh
Xem chi tiết
alibaba nguyễn
7 tháng 6 2017 lúc 9:50

Vì \(a\ge b\ge c\ge1\) ta có bổ đề

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

Lợi dụng cái trên ta được

\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\)

\(\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)

PS: Đề sai nên t sửa luôn đề rồi nhé

\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)

Nguyễn Lâm Ngọc
Xem chi tiết
Min
Xem chi tiết
svtkvtm
11 tháng 7 2019 lúc 21:27

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)

Vi Huyên
11 tháng 7 2019 lúc 21:30

a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )

\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)

Vì a + b + c = 0

Nên a + b = -c

=> ( a + b )2 = (-c)2 = c2

Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2

\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)

\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)

\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)

svtkvtm
11 tháng 7 2019 lúc 21:42

\(xét:\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{1+ab}=\left(\frac{1}{a^2+1}-\frac{1}{1+ab}\right)+\left(\frac{1}{b^2+1}-\frac{1}{1+ab}\right)=\frac{1+ab-a^2-1}{\left(a^2+1\right)\left(1+ab\right)}+\frac{1+ab-1-b^2}{\left(b^2+1\right)\left(1+ab\right)}=\frac{a\left(b-a\right)}{\left(a^2+1\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(b^2+1\right)\left(1+ab\right)}=\left(a-b\right)\left(\frac{b}{\left(b^2+1\right)\left(1+ab\right)}-\frac{a}{\left(a^2+1\right)\left(1+ab\right)}\right)=\left(a-b\right)\left(\frac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(ab+1\right)\left(b^2+1\right)}\right)=\left(a-b\right)\left(\frac{\left(ab-1\right)\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\) \(\left(a-b\right)^2\frac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\left(do:a\ge1;b\ge1\right)\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(a\ge1;b\ge1\right)\)

khoimzx
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:50

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

Khách vãng lai đã xóa
QUan
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 12 2016 lúc 20:27

Chứng minh bằng biến đổi tương đương : 

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+ab}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\left(\frac{a-b}{1+ab}\right)\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)

\(\Leftrightarrow\frac{a-b}{1+ab}.\frac{\left(a-b\right)\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(a^2+1\right)\left(b^2+1\right)}\ge0\)

Vì \(a\ge1,b\ge1\) nên \(ab-1\ge0\) . Mặt khác vì \(\left(a-b\right)^2\ge0\) nên ta có điều phải chứng minh.

huyhieurong75
22 tháng 12 2017 lúc 20:40

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Đoàn Thu Thuỷ
Xem chi tiết
Kiệt Nguyễn
2 tháng 2 2021 lúc 20:14

Trước hết, ta chứng minh bổ đề sau: Nếu \(a,b\ge1\)thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(\frac{1}{1+a}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{1+b}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\sqrt{b}\left(1+a\right)\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{a}\left(1+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)*đúng do \(\sqrt{ab}\ge1\)(vì a,b\(\ge1\))*

Áp dụng bổ đề trên, ta được: \(\left(\frac{1}{1+a^4}+\frac{1}{1+b^4}\right)+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

Tương tự: \(\left(\frac{1}{1+b^4}+\frac{1}{1+c^4}\right)+\frac{2}{1+c^4}\ge\frac{4}{1+bc^3}\)\(\left(\frac{1}{1+c^4}+\frac{1}{1+a^4}\right)+\frac{2}{1+a^4}\ge\frac{4}{1+ca^3}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)(đpcm)

Khách vãng lai đã xóa
Người Bí Ẳn
Xem chi tiết
Nguyễn Hàn Thiên Dii
17 tháng 6 2019 lúc 22:24

đề bài

cm 

1/a+2 + 1/b+2 +1/c+2 <=1

bn p viết đề chứ???

##thiêndi###

dbrby
Xem chi tiết
Akai Haruma
31 tháng 7 2019 lúc 16:15

Lời giải:

Biến đổi tương đương:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{1+xy}\)

\(\Leftrightarrow \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow (xy+1)(x^2+y^2+2)\geq 2(x^2+1)(y^2+1)\)

\(\Leftrightarrow xy(x^2+y^2)+2xy+x^2+y^2+2\geq 2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow xy(x^2+y^2)+2xy-2x^2y^2-x^2-y^2\geq 0\)

\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2-2xy+y^2)\geq 0\)

\(\Leftrightarrow xy(x-y)^2-(x-y)^2\geq 0\leftrightarrow (xy-1)(x-y)^2\geq 0\)

BĐT trên luôn đúng với mọi $x\geq 1, y\geq 1$. Do đó ta có đpcm.

Dấu "=" xảy ra khi $xy=1$ hoặc $x=y\geq 1$