Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Anh
Xem chi tiết
Phung Phuong Nam
9 tháng 12 2017 lúc 19:44

Đặt \(n^3-n+2=a^2\)

<=>  \(n\left(n-1\right)\left(n+1\right)+2=a^2\)

Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)

=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)

Mà   1 số chính phương chia 3 dư 0 hoặc 1

=>  \(n^3-n+2\) không thể là số chính phương

Trần Vũ Phương Thảo
Xem chi tiết
Trần Tuấn Hoàng
29 tháng 3 2022 lúc 19:26

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

Trương Quang Thiện
Xem chi tiết
Xem chi tiết
Thu Huệ
6 tháng 3 2020 lúc 19:59

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

Khách vãng lai đã xóa
Lê Thị Nhung
6 tháng 3 2020 lúc 20:08

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
6 tháng 3 2020 lúc 20:09

a, 3n+2  - 2n+2  + 3n  - 2n 

= 3n (32  + 1) - 2n (22  + 1)

= 10.3n  - 5.2n 

= 10.3n  - 10.2n - 1

= 10(3n  - 2n) - 1 chia hết cho 10

Khách vãng lai đã xóa
Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Minh Đăng
9 tháng 2 2021 lúc 9:29

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP

Khách vãng lai đã xóa
ưertyuuj5
Xem chi tiết
Miyano Shiho
11 tháng 1 2017 lúc 5:56

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

đỗ mạnh hùng
11 tháng 1 2017 lúc 6:01

Tao không biết và tao cũng chẳng quan tâm

mizuki
20 tháng 2 2017 lúc 19:58

mình mới học lớp 5 thôi, thành thật xin lỗi bạn nha

khải nguyên gia tộc
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 10 2016 lúc 17:49

Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)

hay \(n^2< n^2+n+1< \left(n+1\right)^2\)

Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa  hai số ấy nên không thể là số chính phương.

Trần Thiện Khiêm
Xem chi tiết
khải nguyên gia tộc
Xem chi tiết
Khánh Ngọc
29 tháng 8 2020 lúc 10:39

 Với n nguyên dương thì 

n2 < n2 + n < n2 + 2n

<=> n2 < n2 + n + 1 < n2 + 2n + 1

<=> n2 < n2 + n + 1 < ( n + 1 )2

Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )

Khách vãng lai đã xóa