Chứng minh rằng với mọi n >2 thì số n ^ 2 - n + 2 không phải là số chính phương
Chứng minh rằng: n^3-n+2 không phải là số chính phương với mọi n thuộc N
Đặt \(n^3-n+2=a^2\)
<=> \(n\left(n-1\right)\left(n+1\right)+2=a^2\)
Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)
=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)
Mà 1 số chính phương chia 3 dư 0 hoặc 1
=> \(n^3-n+2\) không thể là số chính phương
chứng minh rằng với mọi số tự nhiên n thì (n+2021)^2+2022 không là số chính phương
-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)
\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)
\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)
\(\Leftrightarrow-2n-4043+2022< 0\)
\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)
-Từ điều trên ta suy ra:
\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)
-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.
Chứng minh rằng với mọi n thì 19^2n + 5n^n + 2002 không phải là số chính phương.
a)Chứng minh rằng: Với mọi số nguyên dương n thì:\(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
b)Cho S=abc+bca+cab
Chứng minh rằng S không phải là số chính phương
Mn giúp mik nhoa~
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
a, 3n+2 - 2n+2 + 3n - 2n
= 3n (32 + 1) - 2n (22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n) - 1 chia hết cho 10
Với mọi số tự nhiên n>1, chứng minh rằng \(2^n-1\) không phải là số chính phương.
Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ
Khi đó \(2^n-1=\left(2k+1\right)^2\) \(\left(k\inℕ^∗\right)\)
\(\Leftrightarrow2^n-1=4k^2+4k+1\)
\(\Leftrightarrow2^n=4k^2+4k+2\)
Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4
Mà n>1 nên 2n chia hết cho 4
=> vô lý => điều g/s sai
=> 2n - 1 không là 1 SCP
bài 4
a) chứng minh rằng với mọi n thì 2n^2 +2n +3 ko là số chính phương
b)chứng minh rằng với mọi số tự nhiên n thì 3^n + 1002 ko là số chính phương
các bạn trình bày ra giúp mình nhé
Tao không biết và tao cũng chẳng quan tâm
mình mới học lớp 5 thôi, thành thật xin lỗi bạn nha
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Chứng minh rằng số n^2+n+1 với n nguyên dương không phải là số chính phương
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )